A monotonicity formula and a Liouville-typetheorem for a fourth order super critical problem
Author
dc.contributor.author
Dávila Bonczos, Juan
Author
dc.contributor.author
Dupaigne, Louis
es_CL
Author
dc.contributor.author
Wang, Kelei
es_CL
Author
dc.contributor.author
Wei, Juncheng
es_CL
Admission date
dc.date.accessioned
2014-12-11T14:11:12Z
Available date
dc.date.available
2014-12-11T14:11:12Z
Publication date
dc.date.issued
2014
Cita de ítem
dc.identifier.citation
Advances in Mathematics 258 (2014) 240–285
en_US
Identifier
dc.identifier.issn
DOI:/10.1016/j.aim.2014.02.034
Identifier
dc.identifier.uri
https://repositorio.uchile.cl/handle/2250/126512
General note
dc.description
Artículo de publicación ISI
en_US
Abstract
dc.description.abstract
We consider Liouville-type and partial regularity results for then online arfourth-order problem
Δ2u = |u|p−1u in Rn,
where p>1 and n≥ 1.We give a complete classification of stableand finite Morse index solutions (whether positive o rsign changing),in the full exponent range.We also compute an upper bound. of the Hausdorff dimension of the singular set of extremal solutions.Our approachis motivated by Fleming’ stangent cone analysis technique for minimal surfaces and Federer’s dimension reduction principle in partial regularity theory.A key tool is the monotonicity formula for biharmonic equations.
en_US
Patrocinador
dc.description.sponsorship
L.Dupaigne thanks J.Wei and the math department of the Chinese University of Hong Kong (where part of this work was done) for their warm hospitality. Kelei Wang is partially supported by the Joint Laboratory of CAS-Croucher in Nonlinear PDE. Juncheng Wei is partially supported by NSERC435557-13 of Canada. J.Dávila acknowledges support of FONDECYT 1130360, CAPDE-Anillo ACT-125 and Fondo Basal CMM.