Mostrar el registro sencillo del ítem

Autordc.contributor.authorMaldonado, Sebastián 
Autordc.contributor.authorWeber, Richard es_CL
Autordc.contributor.authorFamili, Fazel es_CL
Fecha ingresodc.date.accessioned2014-12-22T19:46:31Z
Fecha disponibledc.date.available2014-12-22T19:46:31Z
Fecha de publicacióndc.date.issued2014
Cita de ítemdc.identifier.citationInformation Sciences Volume 286, 1 December 2014, Pages 228–246en_US
Identificadordc.identifier.otherdoi:10.1016/j.ins.2014.07.015
Identificadordc.identifier.urihttps://repositorio.uchile.cl/handle/2250/126745
Nota generaldc.descriptionArtículo de publicación SCOPUSen_US
Resumendc.description.abstractFeature selection and classification of imbalanced data sets are two of the most interesting machine learning challenges, attracting a growing attention from both, industry and academia. Feature selection addresses the dimensionality reduction problem by determining a subset of available features to build a good model for classification or prediction, while the class-imbalance problem arises when the class distribution is too skewed. Both issues have been independently studied in the literature, and a plethora of methods to address high dimensionality as well as class-imbalance has been proposed. The aim of this work is to simultaneously explore both issues, proposing a family of methods that select those attributes that are relevant for the identification of the target class in binary classification. We propose a backward elimination approach based on successive holdout steps, whose contribution measure is based on a balanced loss function obtained on an independent subset. Our experiments are based on six highly imbalanced microarray data sets, comparing our methods with well-known feature selection techniques, and obtaining a better prediction with consistently fewer relevant features.en_US
Patrocinadordc.description.sponsorshipCONICYT, FONDECYTen_US
Idiomadc.language.isoenen_US
Publicadordc.publisherElsevieren_US
Tipo de licenciadc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile*
Link a Licenciadc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Palabras clavesdc.subjectData miningen_US
Títulodc.titleFeature selection for high-dimensional class-imbalanced data sets using Support Vector Machinesen_US
Tipo de documentodc.typeArtículo de revista


Descargar archivo

Icon

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivs 3.0 Chile
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivs 3.0 Chile