Mostrar el registro sencillo del ítem
Feature selection for high-dimensional class-imbalanced data sets using Support Vector Machines
| Autor | dc.contributor.author | Maldonado, Sebastián | |
| Autor | dc.contributor.author | Weber, Richard | es_CL |
| Autor | dc.contributor.author | Famili, Fazel | es_CL |
| Fecha ingreso | dc.date.accessioned | 2014-12-22T19:46:31Z | |
| Fecha disponible | dc.date.available | 2014-12-22T19:46:31Z | |
| Fecha de publicación | dc.date.issued | 2014 | |
| Cita de ítem | dc.identifier.citation | Information Sciences Volume 286, 1 December 2014, Pages 228–246 | en_US |
| Identificador | dc.identifier.other | doi:10.1016/j.ins.2014.07.015 | |
| Identificador | dc.identifier.uri | https://repositorio.uchile.cl/handle/2250/126745 | |
| Nota general | dc.description | Artículo de publicación SCOPUS | en_US |
| Resumen | dc.description.abstract | Feature selection and classification of imbalanced data sets are two of the most interesting machine learning challenges, attracting a growing attention from both, industry and academia. Feature selection addresses the dimensionality reduction problem by determining a subset of available features to build a good model for classification or prediction, while the class-imbalance problem arises when the class distribution is too skewed. Both issues have been independently studied in the literature, and a plethora of methods to address high dimensionality as well as class-imbalance has been proposed. The aim of this work is to simultaneously explore both issues, proposing a family of methods that select those attributes that are relevant for the identification of the target class in binary classification. We propose a backward elimination approach based on successive holdout steps, whose contribution measure is based on a balanced loss function obtained on an independent subset. Our experiments are based on six highly imbalanced microarray data sets, comparing our methods with well-known feature selection techniques, and obtaining a better prediction with consistently fewer relevant features. | en_US |
| Patrocinador | dc.description.sponsorship | CONICYT, FONDECYT | en_US |
| Idioma | dc.language.iso | en | en_US |
| Publicador | dc.publisher | Elsevier | en_US |
| Tipo de licencia | dc.rights | Attribution-NonCommercial-NoDerivs 3.0 Chile | * |
| Link a Licencia | dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/cl/ | * |
| Palabras claves | dc.subject | Data mining | en_US |
| Título | dc.title | Feature selection for high-dimensional class-imbalanced data sets using Support Vector Machines | en_US |
| Tipo de documento | dc.type | Artículo de revista |
Descargar archivo
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Artículos de revistas
Artículos de revistas

