Steady state analysis for a relaxed cross diffusion model
Author
dc.contributor.author
Lepoutre, Thomas
Author
dc.contributor.author
Martínez Salazar, Salomé
es_CL
Admission date
dc.date.accessioned
2014-12-30T13:22:48Z
Available date
dc.date.available
2014-12-30T13:22:48Z
Publication date
dc.date.issued
2014
Cita de ítem
dc.identifier.citation
Discrete and Continuous Dynamical Systems February 2014, 34 (2): p. 613-633
en_US
Identifier
dc.identifier.other
doi:10.3934/dcds.2014.34.613
Identifier
dc.identifier.uri
https://repositorio.uchile.cl/handle/2250/126842
General note
dc.description
Artículo de publicación ISI
en_US
Abstract
dc.description.abstract
In this article we study the existence the existence of nonconstant steady state solutions for the following relaxed cross-diffusion system
[fórmula]
with
a bounded smooth domain, n the outer unit normal to @
, > 0 denote the relaxation parameter. The functions a(v), b(u) account for nonlinear crossdiffusion, being a(v) = 1 + v-y
, b~u) = 1 + u-ñ with y, n > 1 a model example.
We give conditions for the stability of constant steady state solutions and we prove that under suitable conditions Turing patterns arise considering as a bifurcation parameter.