Show simple item record

Authordc.contributor.authorNúñez, Alfredo 
Authordc.contributor.authorDe Schutter, Bart es_CL
Authordc.contributor.authorSáez Hueichapán, Doris es_CL
Authordc.contributor.authorŠkrjanc, Igor es_CL
Admission datedc.date.accessioned2015-01-05T19:11:17Z
Available datedc.date.available2015-01-05T19:11:17Z
Publication datedc.date.issued2014
Cita de ítemdc.identifier.citationApplied Soft Computing 17 (2014) 67–78en_US
Identifierdc.identifier.otherDOI: 10.1016/j.asoc.2013.12.011
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/126909
General notedc.descriptionArtículo de publicación ISIen_US
Abstractdc.description.abstractIn this paper a class of hybrid-fuzzy models is presented, where binary membership functions are used tocapture the hybrid behavior. We describe a hybrid-fuzzy identification methodology for non-linear hybridsystems with mixed continuous and discrete states that uses fuzzy clustering and principal componentanalysis. The method first determines the hybrid characteristic of the system inspired by an inverse formof the merge method for clusters, which makes it possible to identify the unknown switching points of aprocess based on just input–output (I/O) data. Next, using the detected switching points, a hard partitionof the I/O space is obtained. Finally, TS fuzzy models are identified as submodels for each partition. Twoillustrative examples, a hybrid-tank system and a traffic model for highways, are presented to show thebenefits of the proposed approach.en_US
Patrocinadordc.description.sponsorshipAcknowledgmentsThis research has been supported by the European 7th Frame-work Network of Excellence “Highly complex and networkedcontrol systems (HYCON2)” Grant 257462, by the Millen-nium Institute “Complex Engineering Systems” (ICM: P-05-004-F,CONICYT: 522 FBO16), Fondecyt Chile Grant 1110047, CONI-CYT/FONDAP/15110019, and by the Ministry of Science, HigherEducation and Technology of the Republic of Slovenia.en_US
Lenguagedc.language.isoenen_US
Publisherdc.publisherElsevieren_US
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Keywordsdc.subjectFuzzy identificationen_US
Títulodc.titleHybrid-fuzzy modeling and identificationen_US
Document typedc.typeArtículo de revista


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile