Show simple item record

Authordc.contributor.authorAvesani, Diego
Authordc.contributor.authorHerrera Ricci, Paulo
Authordc.contributor.authorChiogna, Gabriele
Authordc.contributor.authorBellin, Alberto
Authordc.contributor.authorDumbser, Michael
Admission datedc.date.accessioned2015-07-30T19:49:59Z
Available datedc.date.available2015-07-30T19:49:59Z
Publication datedc.date.issued2015
Cita de ítemdc.identifier.citationAdvances in Water Resources 80 (2015) 43–59en_US
Identifierdc.identifier.issn0309-1708
Identifierdc.identifier.other10.1016/j.advwatres.2015.03.007
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/132282
Abstractdc.description.abstractMost numerical schemes applied to solve the advection–diffusion equation are affected by numerical diffusion. Moreover, unphysical results, such as oscillations and negative concentrations, may emerge when an anisotropic dispersion tensor is used, which induces even more severe errors in the solution of multispecies reactive transport. To cope with this long standing problem we propose a modified version of the standard Smoothed Particle Hydrodynamics (SPH) method based on a Moving-Least-Squares-Weighted- Essentially-Non-Oscillatory (MLS-WENO) reconstruction of concentrations. This scheme formulation (called MWSPH) approximates the diffusive fluxes with a Rusanov-type Riemann solver based on high order WENO scheme. We compare the standard SPH with the MWSPH for different a few test cases, considering both homogeneous and heterogeneous flow fields and different anisotropic ratios of the dispersion tensor. We show that, MWSPH is stable and accurate and that it reduces the occurrence of negative concentrations compared to standard SPH. When negative concentrations are observed, their absolute values are several orders of magnitude smaller compared to standard SPH. In addition, MWSPH limits spurious oscillations in the numerical solution more effectively than classical SPH. Convergence analysis shows that MWSPH is computationally more demanding than SPH, but with the payoff a more accurate solution, which in addition is less sensitive to particles position. The latter property simplifies the time consuming and often user dependent procedure to define the initial dislocation of the particles.en_US
Patrocinadordc.description.sponsorshipGLOBAQUA, "managing the effect of multiple stressors on aquatic ecosystem under water scarsity'' 603629 DFG, Deutsche Forschungsgemeinschaft CI-26/11-1 Conicyt Chile through Fondecyt Project 11110228 STiMulUs, ERC Grant 278267en_US
Lenguagedc.language.isoenen_US
Publisherdc.publisherElsevieren_US
Type of licensedc.rightsAtribución-NoComercial-SinDerivadas 3.0 Chile*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Sourcedc.sourceAdvances in Water Resources
Keywordsdc.subjectSmooth Particle Hydrodynamics (SPH)en_US
Keywordsdc.subjectMoving-Least-Squares (MLS)en_US
Keywordsdc.subjectWENO reconstructionen_US
Keywordsdc.subjectMeshless Lagrangian particle methodsen_US
Keywordsdc.subjectAnisotropic dispersionen_US
Keywordsdc.subjectPorous mediaen_US
Títulodc.titleSmooth Particle Hydrodynamics with nonlinear Moving-Least-Squares WENO reconstruction to model anisotropic dispersion in porous mediaen_US
Document typedc.typeArtículo de revista
dcterms.accessRightsdcterms.accessRightsAcceso abierto
Indexationuchile.indexArtículo de publicación ISI


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial-SinDerivadas 3.0 Chile
Except where otherwise noted, this item's license is described as Atribución-NoComercial-SinDerivadas 3.0 Chile