Show simple item record

Authordc.contributor.authorÁlvarez, Claudio 
Authordc.contributor.authorVeblen, Thomas T. 
Authordc.contributor.authorChristie, Duncan A. 
Authordc.contributor.authorGonzález Reyes, Álvaro 
Admission datedc.date.accessioned2015-08-04T15:26:51Z
Available datedc.date.available2015-08-04T15:26:51Z
Publication datedc.date.issued2015
Cita de ítemdc.identifier.citationForest Ecology and Management 342 (2015) 112–121en_US
Identifierdc.identifier.otherdoi: 10.1016/j.foreco.2015.01.018
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/132330
General notedc.descriptionArtículo de publicación ISIen_US
Abstractdc.description.abstractGlobal warming is expected to enhance radial tree growth at alpine treeline sites worldwide. We developed a well-replicated tree-ring chronology from Nothofagus pumilio near treeline in a high precipitation climate on Choshuenco Volcano (40 S) in Chile to examine: (a) variation in tree radial growth in relation to interannual climatic variability; and (b) relationships of radial growth to variability in El Niño Southern Oscillation (ENSO) and the Antarctic Oscillation (AAO) at interannual and decadal time scales. A tree-ring chronology based on 99 tree-ring series from 80 N. pumilio trees near treeline showed a high series intercorrelation (0.48) indicating a strong common environmental signal. Radial growth is negatively correlated with precipitation in late spring (November–December). Temperature and tree growth are positively correlated during late spring and early summer (November–January). Interannual variability in both seasonal climate and in tree growth is strongly teleconnected to ENSO and AAO variability. Radial growth of N. pumilio in this humid high-elevation forest does not show a positive trend over the past half century as predicted from global treeline theory and broadscale warming in the Patagonian-Andean region. Instead, tree growth increased sharply from the 1960s to a peak in the early 1980s but subsequently declined for c. 30 years to its lowest level in >100 years. The shift to higher radial growth after c. 1976 coincides with a shift towards warmer sea surface temperatures in the tropical Pacific which in turn are associated with warmer growing season temperatures. The decline in tree growth since the mid-1990s is coincident with the increasingly positive phase of the AAO and high spring precipitation periods associated with El Niño conditions. The recent shift towards reduced growth of N. pumilio at this humid high-elevation site coincident with rising AAO mirrors the reduced tree growth beginning in the 1960s for trees growing in relatively xeric, lower elevation sites throughout the Patagonian-Andean region. The current study indicates that N. pumilio growth response in humid high-elevation environments to recent broad-scale warming has been non-linear, and that AAO and ENSO are key climatic forcings of tree growth variability.en_US
Lenguagedc.language.isoenen_US
Publisherdc.publisherElsevieren_US
Type of licensedc.rightsAtribución-NoComercial-SinDerivadas 3.0 Chile*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Keywordsdc.subjectNothofagus pumilioen_US
Keywordsdc.subjectTreelineen_US
Keywordsdc.subjectTree growthen_US
Keywordsdc.subjectEl Niño-Southern Oscillationen_US
Keywordsdc.subjectAntarctic Oscillationen_US
Títulodc.titleRelationships between climate variability and radial growth of Nothofagus pumilio near altitudinal treeline in the Andes of northern Patagonia, Chileen_US
Document typedc.typeArtículo de revista


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial-SinDerivadas 3.0 Chile
Except where otherwise noted, this item's license is described as Atribución-NoComercial-SinDerivadas 3.0 Chile