Show simple item record

Authordc.contributor.authorVizcay, Marcela A. 
Authordc.contributor.authorDuarte Mermoud, Manuel 
Authordc.contributor.authorAylwin Ostale, María de la Luz 
Admission datedc.date.accessioned2015-08-04T20:06:38Z
Available datedc.date.available2015-08-04T20:06:38Z
Publication datedc.date.issued2015
Cita de ítemdc.identifier.citationComputers in Biology and Medicine 56 (2015) 192–199en_US
Identifierdc.identifier.otherDOI 10.1016/j.compbiomed.2014.10.010
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/132374
General notedc.descriptionArtículo de publicación ISIen_US
Abstractdc.description.abstractIn this study we applied pattern recognition (PR) techniques to extract odorant information from local field potential (LFP) signals recorded in the olfactory bulb (OB) of rats subjected to different odorant stimuli. We claim that LFP signals registered on the OB, the first stage of olfactory processing, are stimulus specific in animals with normal sensory experience, and that these patterns correspond to the neural substrate likely required for perceptual discrimination. Thus, these signals can be used as input to an artificial odorant classification system with great success. In this paper we have designed and compared the performance of several configurations of artificial olfaction systems (AOS) based on the combination of four feature extraction (FE) methods (Principal Component Analysis (PCA), Fisher Transformation (FT), Sammon NonLinear Map (NLM) and Wavelet Transform (WT)), and three PR techniques (Linear Discriminant Analysis (LDA), Multilayer Perceptron (MLP) and Support Vector Machine (SVM)), when four different stimuli are presented to rats. The best results were reached when PCA extraction followed by SVM as classifier were used, obtaining a classification accuracy of over 95% for all four stimuli.en_US
Patrocinadordc.description.sponsorshipCONICYT-Chile 22070244-2007 CONICYT through grant FONDECYT-Chile 1061170 Iniciativa Cientifica Milenio ICM P04-068-Fen_US
Lenguagedc.language.isoen_USen_US
Publisherdc.publisherElsevieren_US
Type of licensedc.rightsAtribución-NoComercial-SinDerivadas 3.0 Chile*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Keywordsdc.subjectFeatureextractionen_US
Keywordsdc.subjectPattern recognitionen_US
Keywordsdc.subjectOdorant classificationen_US
Keywordsdc.subjectLocal field potential in ol factory bulben_US
Keywordsdc.subjectPrincipal component analysis (PCA)en_US
Keywordsdc.subjectFisher Transformation (FT)en_US
Keywordsdc.subjectSammon Non Linear Map (NLM)en_US
Keywordsdc.subjectWavelet Transform (WT)en_US
Keywordsdc.subjectMultilayer Perceptron (MLP)en_US
Keywordsdc.subjectSupport Vector Machine (SVM)en_US
Títulodc.titleOdorant recognition using biological responses recorded in olfactory bulb of ratsen_US
Document typedc.typeArtículo de revista


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial-SinDerivadas 3.0 Chile
Except where otherwise noted, this item's license is described as Atribución-NoComercial-SinDerivadas 3.0 Chile