Characterizations of the free disposal condition for nonconvex economies on infinite dimensional commodity spaces
Author
dc.contributor.author
Jofré Cáceres, René
Author
dc.contributor.author
Jourani, Abderrahim
Admission date
dc.date.accessioned
2015-08-12T14:47:03Z
Available date
dc.date.available
2015-08-12T14:47:03Z
Publication date
dc.date.issued
2015
Cita de ítem
dc.identifier.citation
SIAM Journal on Optimization Volumen: 25 Número: 1 Páginas: 699-712
en_US
Identifier
dc.identifier.other
DOI: 10.1137/130931977
Identifier
dc.identifier.uri
https://repositorio.uchile.cl/handle/2250/132625
General note
dc.description
Artículo de publicación ISI
en_US
Abstract
dc.description.abstract
Our aim in this paper is to prove geometric characterizations of the free disposal condition for nonconvex economies on infinite dimensional commodity spaces even if the cone and the production set involved in the condition have an empty interior such as in L-1 with the positive cone L-+(1). We then use this characterization to prove the existence of Pareto and weak Pareto optimal points. We also explore a notion of extremal systems a la Kruger-Mordukhovich. We show that the free disposal hypothesis alone assures the extremality of the production set with respect to some set.