Show simple item record

Authordc.contributor.authorCorrea Haeussler, José 
Authordc.contributor.authorFeuilloley, Laurent 
Authordc.contributor.authorPérez Lantero, Pablo 
Authordc.contributor.authorSoto San Martín, José 
Admission datedc.date.accessioned2015-08-12T15:07:13Z
Available datedc.date.available2015-08-12T15:07:13Z
Publication datedc.date.issued2015
Cita de ítemdc.identifier.citationDiscrete Comput Geom (2015) 53:344–365en_US
Identifierdc.identifier.issn1432-0444
Identifierdc.identifier.otherDOI: 10.1007/s00454-014-9661-y
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/132632
General notedc.descriptionArtículo de publicación ISIen_US
Abstractdc.description.abstractGiven a set of n axis-parallel rectangles in the plane, finding a maximum independent set (MIS), amaximumweighted independent set (WMIS), and aminimum hitting set (MHS), are basic problems in computational geometry and combinatorics. They have attracted significant attention since the sixties, when Wegner conjectured that the duality gap, equal to the ratio between the size of MIS and the size of MHS, is always bounded by a universal constant. An interesting case is when there exists a diagonal line that intersects each of the given rectangles. Indeed, Chepoi and Felsner recently gave a 6-approximation algorithm forMHSin this setting, and showed that the duality gap is between 3/2 and 6.We consider the same setting and improve upon these results. First, we derive an O(n2)-time algorithm for the WMIS when, in addition, every pair of intersecting rectangles have a common point below the diagonal. This improves and extends a classic result of Lubiw, and gives a 2-approximation algorithm for WMIS. Second, we show that MIS is NP-hard. Finally, we prove that the duality gap is between 2 and 4. The upper bound, which implies a 4-approximation algorithm for MHS, follows from simple combinatorial arguments, whereas the lower bound represents the best known lower bound on the duality gap, even in the general setting of the rectangles.en_US
Patrocinadordc.description.sponsorshipNúcleo Milenio Información y Coordinación en Redes ICM/FIC P10-024F; FONDECYT Grant 11110069 and FONDECYT Grant 11130266en_US
Lenguagedc.language.isoenen_US
Publisherdc.publisherSpringeren_US
Type of licensedc.rightsAtribución-NoComercial-SinDerivadas 3.0 Chile*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Keywordsdc.subjectIndependent setsen_US
Keywordsdc.subjectRectangle selectionen_US
Keywordsdc.subjectDuality gapen_US
Títulodc.titleIndependent and Hitting Sets of Rectangles Intersecting a Diagonal Line: Algorithms and Complexityen_US
Document typedc.typeArtículo de revista


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial-SinDerivadas 3.0 Chile
Except where otherwise noted, this item's license is described as Atribución-NoComercial-SinDerivadas 3.0 Chile