Intermediate reduction method and infinitely many positive solutions of nonlinear Schrödinger equations with non-symmetric potentials
Author
dc.contributor.author
Pino Manresa, Manuel del
Author
dc.contributor.author
Wei, Juncheng
Author
dc.contributor.author
Yao, Wei
Admission date
dc.date.accessioned
2015-08-13T14:01:20Z
Available date
dc.date.available
2015-08-13T14:01:20Z
Publication date
dc.date.issued
2015
Cita de ítem
dc.identifier.citation
Calc. Var. (2015) 53:473–523
en_US
Identifier
dc.identifier.issn
0944-2669
Identifier
dc.identifier.other
DOI: 10.1007/s00526-014-0756-3
Identifier
dc.identifier.uri
https://repositorio.uchile.cl/handle/2250/132671
General note
dc.description
Artículo de publicación ISI
en_US
Abstract
dc.description.abstract
We consider the standing-wave problem for a nonlinear Schrödinger equation,
corresponding to the semilinear elliptic problem
− u + V(x)u = |u|p−1u, u ∈ H1(R2),
where V(x) is a uniformly positive potential and p > 1. Assuming that
V(x) = V∞ + a
|x|m
+ O
1
|x|m+σ
, as |x| → +∞,
for instance if p > 2, m > 2 andσ > 1 we prove the existence of infinitely many positive
solutions. If V(x) is radially symmetric, this result was proved in [43]. The proof without
symmetries is much more difficult, and for that we develop a new intermediate Lyapunov–
Schmidt reductionmethod,which is a compromise between the finite and infinite dimensional
versions of it.
en_US
Patrocinador
dc.description.sponsorship
Fondecyt Grant 110181, Fondo Basal CMM and Fondecyt Grant 3130543