Mostrar el registro sencillo del ítem

Autordc.contributor.authorChávez, E. 
Autordc.contributor.authorGraff, M. 
Autordc.contributor.authorNavarro, Gonzalo 
Autordc.contributor.authorTéllez, E. S. 
Fecha ingresodc.date.accessioned2015-08-18T19:08:31Z
Fecha disponibledc.date.available2015-08-18T19:08:31Z
Fecha de publicacióndc.date.issued2015
Cita de ítemdc.identifier.citationInformation Systems51(2015)43–61en_US
Identificadordc.identifier.issn0306-4379
Identificadordc.identifier.otherDOI: 10.1016/j.is.2015.02.001
Identificadordc.identifier.urihttps://repositorio.uchile.cl/handle/2250/132859
Nota generaldc.descriptionArtículo de publicación ISIen_US
Resumendc.description.abstractProximity searching is the problem of retrieving,from a given database, those objects closest to a query.To avoid exhaustive searching,data structures called indexes are builton the database prior to serving queries.The curse of dimensionality is a well-known problem for indexes:in spaces with sufficiently concentrated distance histograms,no index out performs an exhaustives can of the database. In recent years,a number of index es for approximate proximity searching have been proposed. These are able to cope with the curse of dimensionality inexchangefor returning an answer that might beslightly different from the correctone. In this paper we show that many of those recent indexes can be understood as variants of a simple general model basedon K-nearest reference signatures.A set o freferences is chosen from the database,and the signature of each object consists of the K references nearest to the object. At query time,the signature of the query is computed and the search examines only the objects whose signature is close enough to that of the query. Many known and novelindexes are obtained by considering different ways to determine how much detail the signature records(e.g.,justthesetofnearestreferences, or also their proximity order to the object, oral so their distances to the object,and soon), how the similarity between signatures is defined,and how the parameters are tuned.In addition,we introduce a space-efficient representation for those families of indexes, making it possible to search very large databases in main memory.Small indexes are cache friendly,inducing faster queries. We perform exhaustive experiments comparing several known and new indexes that derive from our framework,evaluatingtheir time performance,memory usage,and quality of approximation.The best indexes out perform the state of the art,offering an attractive balance between all these aspects,and turn out to be excellent choices in many scenarios.Our framework gives high flexibility to design new indexes.en_US
Patrocinadordc.description.sponsorshipFB0001,Conicyt,Chile and CONACyTGrant179795 Mexicoen_US
Idiomadc.language.isoenen_US
Publicadordc.publisherElsevieren_US
Tipo de licenciadc.rightsAtribución-NoComercial-SinDerivadas 3.0 Chile*
Link a Licenciadc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Palabras clavesdc.subjectProximity searchen_US
Palabras clavesdc.subjectSearching bycontentin multimedia databasesen_US
Palabras clavesdc.subjectk nearest neighborsen_US
Palabras clavesdc.subjectIndexing metric spacesen_US
Títulodc.titleNear neighbor searching with K nearest referencesen_US
Tipo de documentodc.typeArtículo de revista


Descargar archivo

Icon

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución-NoComercial-SinDerivadas 3.0 Chile
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución-NoComercial-SinDerivadas 3.0 Chile