Finite mass solutions for a nonlocal inhomogeneous dispersal equation
Author
dc.contributor.author
García Melián, Jorge
Author
dc.contributor.author
Cortázar, Carmen
Author
dc.contributor.author
Martínez Salazar, Salomé
Admission date
dc.date.accessioned
2015-08-19T02:22:18Z
Available date
dc.date.available
2015-08-19T02:22:18Z
Publication date
dc.date.issued
2015
Cita de ítem
dc.identifier.citation
Discrete and Continuous Dynamical Systems Volumen: 35 Número: 4 Páginas: 1409-1419
en_US
Identifier
dc.identifier.issn
1078-0947
Identifier
dc.identifier.uri
https://repositorio.uchile.cl/handle/2250/132906
General note
dc.description
Artículo de publicación ISI
en_US
Abstract
dc.description.abstract
In this paper we study the asymptotic behavior of the following nonlocal inhomogeneous dispersal equation
u(t)(x, t) = integral(R) J (x-y/g(y)) u(y, t)/g(y)dy - u(x, t) x is an element of R, t > 0,
where J is an even, smooth, probability density, and g, which accounts for a dispersal distance, is continuous and positive. We prove that if g(vertical bar y vertical bar) similar to a vertical bar y vertical bar as vertical bar y vertical bar -> +infinity for some 0 < a < 1, there exists a unique (up to normalization) positive stationary solution, which is in L-1(R). On the other hand, if g(vertical bar y vertical bar) similar to vertical bar y vertical bar(p), with p > 2 there are no positive stationary solutions. We also establish the asymptotic behavior of the solutions of the evolution problem in both cases.