Show simple item record

Authordc.contributor.authorDaniilidis, Aris 
Authordc.contributor.authorDavid, G. 
Authordc.contributor.authorDurand Cartagena, E. 
Authordc.contributor.authorLemenant, A. 
Admission datedc.date.accessioned2015-08-25T02:45:06Z
Available datedc.date.available2015-08-25T02:45:06Z
Publication datedc.date.issued2015
Cita de ítemdc.identifier.citationJ Geom Anal (2015) 25:1211–1239en_US
Identifierdc.identifier.issn1050-6926
Identifierdc.identifier.otherDOI: 10.1007/s12220-013-9464-z
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/133096
General notedc.descriptionArtículo de publicación ISIen_US
Abstractdc.description.abstractIt is hereby established that, in Euclidean spaces of finite dimension, bounded self-contracted curves have finite length. This extends the main result of Daniilidis et al. (J. Math. Pures Appl. 94:183–199, 2010) concerning continuous planar self-contracted curves to any dimension, and dispenses entirely with the continuity requirement. The proof borrows heavily from a geometric idea of Manselli and Pucci (Geom. Dedic. 38:211–227, 1991) employed for the study of regular enough curves, and can be seen as a nonsmooth adaptation of the latter, albeit a nontrivial one. Applications to continuous and discrete dynamical systems are discussed: continuous self-contracted curves appear as generalized solutions of nonsmooth convex foliation systems, recovering a hidden regularity after reparameterization, as a consequence of our main result. In the discrete case, proximal sequences (obtained through implicit discretization of a gradient system) give rise to polygonal self-contracted curves. This yields a straightforward proof for the convergence of the exact proximal algorithm, under any choice of parameters.en_US
Patrocinadordc.description.sponsorshipMTM2011-29064-C01 (Spain) and by the FONDECYT Regular Grant No. 1130176 (Chile).en_US
Lenguagedc.language.isoenen_US
Publisherdc.publisherSpringeren_US
Type of licensedc.rightsAtribución-NoComercial-SinDerivadas 3.0 Chile*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Keywordsdc.subjectSelf-contracted curveen_US
Keywordsdc.subjectRectifiable curveen_US
Keywordsdc.subjectConvex foliationen_US
Keywordsdc.subjectSecanten_US
Keywordsdc.subjectSelf-expanded curveen_US
Keywordsdc.subjectProximal algorithmen_US
Títulodc.titleRectifiability of Self-Contracted Curves in the Euclidean Space and Applicationsen_US
Document typedc.typeArtículo de revista


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial-SinDerivadas 3.0 Chile
Except where otherwise noted, this item's license is described as Atribución-NoComercial-SinDerivadas 3.0 Chile