Show simple item record

Authordc.contributor.authorFall, Mouhamed Moustapha 
Authordc.contributor.authorMahmoudi, Fethi 
Authordc.contributor.authorValdinoci, Enrico 
Admission datedc.date.accessioned2015-08-25T15:26:18Z
Available datedc.date.available2015-08-25T15:26:18Z
Publication datedc.date.issued2015
Cita de ítemdc.identifier.citationNonlinearity 28 (2015) 1937–1961en_US
Identifierdc.identifier.otherDOI: 10.1088/0951-7715/28/6/1937
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/133140
General notedc.descriptionArtículo de publicación ISIen_US
Abstractdc.description.abstractWe consider here solutions of the nonlinear fractional Schr¨odinger equation ε2s(− )su + V (x)u = up. We show that concentration points must be critical points for V . We also prove that if the potential V is coercive and has a unique global minimum, then ground states concentrate suitably at such a minimal point as ε tends to zero. In addition, if the potential V is radial and radially decreasing, then the minimizer is unique provided ε is smallen_US
Lenguagedc.language.isoenen_US
Publisherdc.publisherIOP Publishingen_US
Type of licensedc.rightsAtribución-NoComercial-SinDerivadas 3.0 Chile*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Keywordsdc.subjectUniquenessen_US
Keywordsdc.subjectConcentration phenomenaen_US
Keywordsdc.subjectGround statesen_US
Keywordsdc.subjectFractional Laplacianen_US
Títulodc.titleGround states and concentration phenomena for the fractional Schrodinger equationen_US
Document typedc.typeArtículo de revista


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial-SinDerivadas 3.0 Chile
Except where otherwise noted, this item's license is described as Atribución-NoComercial-SinDerivadas 3.0 Chile