Show simple item record

Professor Advisordc.contributor.advisorRíos Pérez, Sebastián
Authordc.contributor.authorVidela Cavieres, Iván Fernando 
Staff editordc.contributor.editorFacultad de Ciencias Físicas y Matemáticas
Staff editordc.contributor.editorDepartamento de Ingeniería Industrial
Associate professordc.contributor.otherMusalem Said, Andrés 
Associate professordc.contributor.otherSchwartz Perlroth, Daniel
Admission datedc.date.accessioned2015-09-09T15:25:58Z
Available datedc.date.available2015-09-09T15:25:58Z
Publication datedc.date.issued2015
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/133522
General notedc.descriptionMagíster en Gestión de Operaciones
General notedc.descriptionIngeniero Civil Industrial
Abstractdc.description.abstractEn las empresas de Retail, las áreas de Customer Intelligence tienen muchas oportunidades de mejorar sus decisiones estratégicas a partir de la información que podrían obtener de los registros de interacciones con sus clientes. Sin embargo se ha convertido en un desafío poder procesar estos grandes volúmenes de datos. Uno de los problemas que se enfrentan día a día es segmentar o agrupar clientes. La mayoría de las empresas generan agrupaciones según nivel de gasto, no por similitud en sus canastas de compra, como propone la literatura. Otro desafío de estas empresas es aumentar las ventas en cada visita del cliente y fidelizar. Una de las técnicas utilizadas para lograrlo es usar sistemas de recomendación. En este trabajo se proceso ́ alrededor de medio billón de registros transaccionales de una cadena de supermercados mayorista. Al aplicar las técnicas tradicionales de Clustering y Market Basket Analysis los resultados son de baja calidad, haciendo muy difícil la interpretación, además no se logra identificar grupos que permitan clasificar a un cliente de acuerdo a sus compras históricas. Entendiendo que la presencia simultánea de dos productos en una misma boleta implica una relación entre ellos, se usó un método de graph mining basado en redes sociales que permitió obtener grupos de productos identificables que denominamos comunidades, a las que puede pertenecer un cliente. La robustez del modelo se comprueba por la estabilidad de los grupos generados en distintos periodos de tiempo. Bajo las mismas restricciones que la empresa exige, se generan recomendaciones basadas en las compras históricas y en la pertenencia de los clientes a los distintos grupos de productos. De esta manera, los clientes reciben recomendaciones mucho más pertinentes y no solo son basadas en los que otros clientes también compraron. La novedosa forma de resolver el problema de segmentar clientes ayuda a mejorar en un 140% el actual método de recomendaciones que utiliza la cadena Chilena de supermercados mayoristas. Esto se traduce en un aumento de más de 430% de los ingresos posibles.en_US
Lenguagedc.language.isoenen_US
Publisherdc.publisherUniversidad de Chileen_US
Type of licensedc.rightsAtribución-NoComercial-SinDerivadas 3.0 Chile*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Keywordsdc.subjectMinería de datosen_US
Keywordsdc.subjectMediciones multidimensionalesen_US
Keywordsdc.subjectPreferencia de los consumidoresen_US
Keywordsdc.subjectConsumidores - Investigacionesen_US
Keywordsdc.subjectRetailen_US
Keywordsdc.subjectBig dataen_US
Títulodc.titleImprovement of recommendation system for a wholesale store chain using advanced data mining techniquesen_US
Document typedc.typeTesis


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial-SinDerivadas 3.0 Chile
Except where otherwise noted, this item's license is described as Atribución-NoComercial-SinDerivadas 3.0 Chile