Show simple item record

Authordc.contributor.authorCorrea Haeussler, José 
Authordc.contributor.authorLarré, Omar 
Authordc.contributor.authorSoto San Martín, José 
Admission datedc.date.accessioned2015-10-04T20:55:32Z
Available datedc.date.available2015-10-04T20:55:32Z
Publication datedc.date.issued2015
Cita de ítemdc.identifier.citationSIAM Journal on Discrete Mathematics, 29(2), 915–939. (25 pages)en_US
Identifierdc.identifier.otherDOI: 10.1137/140972925
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/134084
General notedc.descriptionArtículo de publicación ISIen_US
Abstractdc.description.abstractAfter a sequence of improvements Boyd et al. [TSP on cubic and subcubic graphs, Integer Programming and Combinatorial Optimization, Lecture Notes in Comput. Sci. 6655, Springer, Heidelberg, 2011, pp. 65-77] proved that any 2-connected graph whose n vertices have degree 3, i.e., a cubic 2-connected graph, has a Hamiltonian tour of length at most (4/3)n, establishing in particular that the integrality gap of the subtour LP is at most 4/3 for cubic 2-connected graphs and matching the conjectured value of the famous 4/3 conjecture. In this paper we improve upon this result by designing an algorithm that finds a tour of length (4/3 - 1/61236)n, implying that cubic 2-connected graphs are among the few interesting classes of graphs for which the integrality gap of the subtour LP is strictly less than 4/3. With the previous result, and by considering an even smaller epsilon, we show that the integrality gap of the TSP relaxation is at most 4/3 - epsilon even if the graph is not 2-connected (i.e., for cubic connected graphs), implying that the approximability threshold of the TSP in cubic graphs is strictly below 4/3. Finally, using similar techniques we show, as an additional result, that every Barnette graph admits a tour of length at most (4/3 - 1/18)n.en_US
Patrocinadordc.description.sponsorshipNucleo Milenio Informacion y Coordinacion en Redes ICM/FIC RC130003 FONDECYT 11130266en_US
Lenguagedc.language.isoenen_US
Publisherdc.publisherSociety for Industrial and Applied Mathematicsen_US
Type of licensedc.rightsAtribución-NoComercial-SinDerivadas 3.0 Chile*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Keywordsdc.subjectTraveling salesman problemen_US
Keywordsdc.subjectCubic graphsen_US
Keywordsdc.subjectIntegrality gapen_US
Títulodc.titleTSP Tours in Cubic Graphs: Beyond 4/3 Read More: http://epubs.siam.org/doi/abs/10.1137/140972925en_US
Document typedc.typeArtículo de revista


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial-SinDerivadas 3.0 Chile
Except where otherwise noted, this item's license is described as Atribución-NoComercial-SinDerivadas 3.0 Chile