Self-generated interior blow-up solutions in fractional elliptic equation with absorption
Author
dc.contributor.author
Chen, Huyuan
Author
dc.contributor.author
Felmer Aichele, Patricio
Author
dc.contributor.author
Quaas, Alexander
Admission date
dc.date.accessioned
2015-10-19T20:48:32Z
Available date
dc.date.available
2015-10-19T20:48:32Z
Publication date
dc.date.issued
2015
Cita de ítem
dc.identifier.citation
Differential Integral Equations 28 (2015), no. 9-10, 839–860
en_US
Identifier
dc.identifier.uri
https://repositorio.uchile.cl/handle/2250/134486
General note
dc.description
Artículo de publicación ISI
en_US
Abstract
dc.description.abstract
In this paper, we study positive solutions to problems involving the fractional Laplacian
{(-Delta)(alpha)u(x) + vertical bar u vertical bar(p-1)u(x) = 0, x is an element of Omega \ C,
u(x) = 0, x is an element of Omega(c),
lim(x is an element of Omega\C, x -> C) u(x) = +infinity,
where p > 1 and Omega is an open bounded C-2 domain in R-N, C subset of Omega is a compact C-2 manifold with N - 1 multiples dimensions and without boundary, the operator (-Delta)(alpha) with alpha is an element of (0,1) is the fractional Laplacian. We consider the existence of positive solutions for problem (0.1). Moreover, we further analyze uniqueness, asymptotic behavior and nonexistence.
en_US
Patrocinador
dc.description.sponsorship
NSFC
11401270
SRF for ROCS, SEM
Fondecyt
1110291
1151180
Programa BASAL-CMM U. de Chile
Programa Basal, CMM. U. de Chile
Millennium Nucleus Center for Analysis of PDE
NC130017