Show simple item record

Authordc.contributor.authorSchraudner, Michael 
Admission datedc.date.accessioned2015-10-29T20:37:16Z
Available datedc.date.available2015-10-29T20:37:16Z
Publication datedc.date.issued2015
Cita de ítemdc.identifier.citationErgodic Theory and Dynamical Systems Volumen: 35 Páginas: 1962-1999 Subdivisión: 6 Sept 2015en_US
Identifierdc.identifier.otherDOI: 10.1017/etds.2014.2
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/134771
General notedc.descriptionArtículo de publicación ISIen_US
General notedc.descriptionSin acceso a texto completo
Abstractdc.description.abstractWe investigate under which circumstances the projective subdynamics of multidimensional shifts of finite type can be non-sofic. In particular, we give a sufficient condition ensuring the one-dimensional projective subdynamics of such Z(d) systems to be sofic and we show that this condition is already met (along certain, respectively all, sublattices) by most of the commonly used uniform mixing conditions. (Examples of the different situations are given.) Complementary to this we are able to prove a characterization of one-dimensional projective subdynamics for strongly irreducible Z(d) shifts of finite type for every d >= 2: in this setting the class of possible subdynamics coincides exactly with the class of mixing Z sofics. This stands in stark contrast to the much more diverse situation in merely topologically mixing multidimensional shifts of finite type.en_US
Patrocinadordc.description.sponsorshipBasal project CMM, Universidad de Chile FONDE- CYT 1100719 Anillo ACT-1103en_US
Lenguagedc.language.isoenen_US
Publisherdc.publisherCambridge Univ Pressen_US
Keywordsdc.subjectSystemsen_US
Keywordsdc.subjectEntropyen_US
Títulodc.titleOne-dimensional projective subdynamics of uniformly mixing Z(d) shifts of finite typeen_US
Document typedc.typeArtículo de revista


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record