From localized spots to the formation of invaginated labyrinthine structures in a Swift-Hohenberg model
Author
dc.contributor.author
Bordeu, I.
Author
dc.contributor.author
Clerc Gavilán, Marcel
Author
dc.contributor.author
Lefever, R.
Author
dc.contributor.author
Tlidi, M.
Admission date
dc.date.accessioned
2015-11-02T18:10:10Z
Available date
dc.date.available
2015-11-02T18:10:10Z
Publication date
dc.date.issued
2015
Cita de ítem
dc.identifier.citation
Communications in Nonlinear Science and Numerical Simulation 29 (2015) 482-487
en_US
Identifier
dc.identifier.other
DOI: 10.1016/j.cnsns.2015.05.028
Identifier
dc.identifier.uri
https://repositorio.uchile.cl/handle/2250/134801
General note
dc.description
Artículo de publicación ISI
en_US
Abstract
dc.description.abstract
The stability of a circular localized spot with respect to azimuthal perturbations is studied in a prototype variational model, namely, a Swift-Hohenberg type equation. The conditions under which the circular shape of the spot undergoes an elliptical deformation which transforms it into a rod shaped structure are analyzed. As it elongates, the rod structure exhibits a transversal instability, generating an invaginated labyrinthine structure which invades all the space available.