Metodolgía para estimar el impacto que generan las llamadas realizadas en un call center en la fuga de los clientes utilizando técnicas de text mining
Professor Advisor
dc.contributor.advisor
Musalem Said, Andrés
Author
dc.contributor.author
Sepúlveda Jullian, Catalina
Staff editor
dc.contributor.editor
Facultad de Ciencias Físicas y Matemáticas
Staff editor
dc.contributor.editor
Departamento de Ingeniería Industrial
Associate professor
dc.contributor.other
Ríos Pérez, Sebastián
Associate professor
dc.contributor.other
Goic Figueroa, Marcel
Admission date
dc.date.accessioned
2015-11-12T17:41:02Z
Available date
dc.date.available
2015-11-12T17:41:02Z
Publication date
dc.date.issued
2015
Identifier
dc.identifier.uri
https://repositorio.uchile.cl/handle/2250/135070
General note
dc.description
Ingeniera Civil Industrial
Abstract
dc.description.abstract
La industria de las telecomunicaciones está en constante crecimiento debido al desarrollo de las tecnologías y a la necesidad creciente de las personas de estar conectadas. Por lo mismo es que presenta un alto grado de competitividad y los clientes son libres de elegir la opción que más les acomode y cumpla con sus expectativas.
De esta forma la predicción de fuga, y con ello la retención de clientes, son factores fundamentales para el éxito de una compañía. Sin embargo, dados los altos grados de competitividad entre las distintas empresas, se hace necesario innovar en cuanto a modelos de fuga utilizando nuevas fuentes de información, como lo son las llamadas al Call Center. Es así como el objetivo general de este trabajo es medir el impacto que generan las llamadas realizadas en el Call Center en la predicción de fuga de los clientes.
Para lograr lo anterior se cuenta con información de las interacciones que tienen los clientes con el Call Center, específicamente el texto de cada llamada. Para extraer información sobre el contenido de las llamadas se aplicó un modelo de detección de tópicos sobre el texto para así conocer los temas tratados y utilizar esta información en los modelos de fuga.
Los resultados obtenidos luego de realizar diversos modelos logit de predicción de fuga, muestran que al utilizar tanto la información de las llamadas como la del cliente (demográfica y transaccional), el modelo es superior en accuracy en un 8.7% a uno que no utiliza esta nueva fuente de información. Además el modelo con ambos tipos de variables presenta un error tipo I un 25% menor a un modelo que no incluye el contenido de las llamadas.
Tras los análisis realizados es posible concluir que las llamadas al Call Center sí son relevantes y de ayuda al momento de predecir la fuga de un cliente, ya que logran aumentar la capacidad predictiva y ajuste del modelo. Además de que entregan nueva información sobre el comportamiento del cliente y es posible detectar aquellos tópicos que puedan estar asociados con la fuga, lo que permite tomar acciones correctivas.