Show simple item record

Authordc.contributor.authorBonomo, Flavia 
Authordc.contributor.authorSchaudt, Oliver 
Authordc.contributor.authorStein, Maya 
Authordc.contributor.authorValencia Pabón, Mario 
Admission datedc.date.accessioned2015-12-04T18:16:34Z
Available datedc.date.available2015-12-04T18:16:34Z
Publication datedc.date.issued2015
Cita de ítemdc.identifier.citationAlgorithmica Volumen: 73 Número: 2 oct 2015en_US
Identifierdc.identifier.otherDOI: 10.1007/s00453-014-9921-5
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/135495
General notedc.descriptionArtículo de publicación ISIen_US
Abstractdc.description.abstractA b-coloring of a graph is a proper coloring such that every color class contains a vertex that is adjacent to all other color classes. The b-chromatic number of a graph , denoted by , is the maximum number such that admits a b-coloring with colors. A graph is called b-continuous if it admits a b-coloring with colors, for every , and b-monotonic if for every induced subgraph of , and every induced subgraph of . We investigate the b-chromatic number of graphs with stability number two. These are exactly the complements of triangle-free graphs, thus including all complements of bipartite graphs. The main results of this work are the following: (1) We characterize the b-colorings of a graph with stability number two in terms of matchings with no augmenting paths of length one or three. We derive that graphs with stability number two are b-continuous and b-monotonic. (2) We prove that it is NP-complete to decide whether the b-chromatic number of co-bipartite graph is at least a given threshold. (3) We describe a polynomial time dynamic programming algorithm to compute the b-chromatic number of co-trees. (4) Extending several previous results, we show that there is a polynomial time dynamic programming algorithm for computing the b-chromatic number of tree-cographs. Moreover, we show that tree-cographs are b-continuous and b-monotonic.en_US
Patrocinadordc.description.sponsorshipUBACyT Grant 20020100100980 CONICET PIP 112-200901-00178 11220120100450CO ANPCyT PICT (Argentina) 2012-1324 MathAmSud Project (Argentina-Brazil-Chile-France) 13MATH-07en_US
Lenguagedc.language.isoenen_US
Publisherdc.publisherSpringeren_US
Type of licensedc.rightsAtribución-NoComercial-SinDerivadas 3.0 Chile*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Keywordsdc.subjectb-Coloringen_US
Keywordsdc.subjectStability number twoen_US
Keywordsdc.subjectCo-triangle-free graphsen_US
Keywordsdc.subjectNP-hardnessen_US
Keywordsdc.subjectTreecographsen_US
Keywordsdc.subjectPolytime dynamic programming algorithmsen_US
Títulodc.titleb-Coloring is NP-hard on Co-bipartite Graphs and Polytime Solvable on Tree-Cographsen_US
Document typedc.typeArtículo de revista


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial-SinDerivadas 3.0 Chile
Except where otherwise noted, this item's license is described as Atribución-NoComercial-SinDerivadas 3.0 Chile