Show simple item record

Authordc.contributor.authorRojas, N. 
Authordc.contributor.authorTirapegui Zurbano, Enrique 
Admission datedc.date.accessioned2015-12-08T23:14:15Z
Available datedc.date.available2015-12-08T23:14:15Z
Publication datedc.date.issued2015
Cita de ítemdc.identifier.citationJournal of Fluid Mechanics Volumen: 780 Páginas: 99-119 oct- 2015en_US
Identifierdc.identifier.otherDOI: 10.1371/journal.pone.0136620
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/135519
General notedc.descriptionArtículo de publicación ISIen_US
General notedc.descriptionSin acceso a texto completo
Abstractdc.description.abstractThis article contains numerical and theoretical results on the circular and polygonal hydraulic jumps in the framework of inertial lubrication theory. The free surface and velocity fields are computed along with cross-sections of the vorticity and pressure, in agreement with experimental data. The forces that drive and resist the instability are identified with the radial shear force, the azimuthal surface tension and the hydrostatic azimuthal force, in addition to a nonlinear term in the radial coordinate. Periodic solutions are obtained from the first orders of a perturbation theory by considering azimuthal symmetries. The thresholds of the instability are defined at closed jumps for discontinuous solutions and at one-sided hydraulic jumps for continuous curves that conserve fluid mass density.en_US
Patrocinadordc.description.sponsorshipproject Fondecyt 1120329 CONICYT PAI/Academia 79112030en_US
Lenguagedc.language.isoenen_US
Publisherdc.publisherCambridge Univ Pressen_US
Keywordsdc.subjectLow-Reynolds-number flowsen_US
Keywordsdc.subjectLubrication theoryen_US
Keywordsdc.subjectWaves/free-surface flowsen_US
Títulodc.titleHarmonic solutions for polygonal hydraulic jumps in thin fluid filmsen_US
Document typedc.typeArtículo de revista


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record