Boundary Singularities on a Wedge-like Domain of a Semilinear Elliptic Equation
Author
dc.contributor.author
Gkikas, Konstantinos T.
Admission date
dc.date.accessioned
2015-12-10T13:27:22Z
Available date
dc.date.available
2015-12-10T13:27:22Z
Publication date
dc.date.issued
2015
Cita de ítem
dc.identifier.citation
Proceedings of the Royal Society of Edinburgh Section A-Mathematics Volumen: 145 Número: 5 oct. 2015
en_US
Identifier
dc.identifier.other
DOI: 10.1017/S0308210515000207
Identifier
dc.identifier.uri
https://repositorio.uchile.cl/handle/2250/135588
General note
dc.description
Artículo de publicación ISI
en_US
Abstract
dc.description.abstract
Let n >= 2 and let Omega subset of Rn+1 be a Lipschitz wedge-like domain. We construct positive weak solutions of the problem
Delta u + u(P) = 0 in Omega
that vanish in a suitable trace sense on partial derivative Omega, but which are singular at a prescribed 'edge' of Omega if p is equal to or slightly above a certain exponent p(0) > 1 that depends on Omega. Moreover, for the case in which Omega is unbounded, the solutions have fast decay at infinity.