Show simple item record

Authordc.contributor.authorHladký, Jan 
Authordc.contributor.authorPiguet, Diana 
Authordc.contributor.authorSimonovits, Miklós 
Authordc.contributor.authorStein, Maya 
Authordc.contributor.authorSzemerédi, Endre 
Admission datedc.date.accessioned2015-12-14T14:58:36Z
Available datedc.date.available2015-12-14T14:58:36Z
Publication datedc.date.issued2015
Cita de ítemdc.identifier.citationElectronic Research Announcements in Mathematical Sciences Volumen: 22 Páginas: 1-11 2015en_US
Identifierdc.identifier.otherDOI: 10.3934/era.2015.22.1
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/135685
General notedc.descriptionArtículo de publicación ISIen_US
Abstractdc.description.abstractLoebl, Komlos and Sos conjectured that every n-vertex graph G with at least n/2 vertices of degree at least k contains each tree T of order k + 1 as a subgraph. We give a sketch of a proof of the approximate version of this conjecture for large values of k. For our proof, we use a structural decomposition which can be seen as an analogue of Szemeredi's regularity lemma for possibly very sparse graphs. With this tool, each graph can be decomposed into four parts: a set of vertices of huge degree, regular pairs (in the sense of the regularity lemma), and two other objects each exhibiting certain expansion properties. We then exploit the properties of each of the parts of G to embed a given tree T. The purpose of this note is to highlight the key steps of our proof. Details can be found in [arXiv:1211.3050].en_US
Patrocinadordc.description.sponsorshipBAYHOST fellowship DAAD fellowship Charles University GAUK 202-10/258009 EPSRC award EP/D063191/1 EPSRC Postdoctoral Fellowship NSF DMS-0902241 Marie Curie fellowship FIST DFG grant TA 309/2-1 Czech Ministry of Education project 1M0545 European Union's FP7 PIEF-GA-2009-253925 EPSRC Additional Sponsorship EP/J501414/1 FAPESP fellowship FAPESP travel grant PQ-EX 2008/50338-0 CMM-Basal FONDECYT 11090141 1140766en_US
Lenguagedc.language.isoenen_US
Publisherdc.publisherAmer Inst Mathematical Sciencesen_US
Type of licensedc.rightsAtribución-NoComercial-SinDerivadas 3.0 Chile*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Keywordsdc.subjectExtremal graph theoryen_US
Keywordsdc.subjectTree-containment problemsen_US
Keywordsdc.subjectLoebl-Komlos-Sos conjectureen_US
Keywordsdc.subjectRegularity lemmaen_US
Keywordsdc.subjectSparse graphsen_US
Títulodc.titleThe approximate loebl-komlos-sos conjecture and embedding trees in sparse graphsen_US
Document typedc.typeArtículo de revista


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial-SinDerivadas 3.0 Chile
Except where otherwise noted, this item's license is described as Atribución-NoComercial-SinDerivadas 3.0 Chile