The precedence constrained knapsack problem: Separating maximally violated inequalities
Author
dc.contributor.author
Espinoza González, Daniel
Author
dc.contributor.author
Goycoolea, Marcos
Author
dc.contributor.author
Moreno, Eduardo
Admission date
dc.date.accessioned
2015-12-14T15:24:01Z
Available date
dc.date.available
2015-12-14T15:24:01Z
Publication date
dc.date.issued
2015
Cita de ítem
dc.identifier.citation
Discrete Applied Mathematics Volumen: 194 Páginas: 65-80 oct 2015
en_US
Identifier
dc.identifier.other
DOI: 10.1016/j.dam.2015.05.020
Identifier
dc.identifier.uri
https://repositorio.uchile.cl/handle/2250/135687
General note
dc.description
Artículo de publicación ISI
en_US
Abstract
dc.description.abstract
We consider the problem of separating maximally violated inequalities for the precedence constrained knapsack problem. Though we consider maximally violated constraints in a very general way, special emphasis is placed on induced cover inequalities and induced clique inequalities. Our contributions include a new partial characterization of maximally violated inequalities, a new safe shrinking technique, and new insights on strengthening and lifting. This work follows on the work of Boyd (1993), Park and Park (1997), van de Leensel et al. (1999) and Boland et al. (2011). Computational experiments show that our new techniques and insights can be used to significantly improve the performance of cutting plane algorithms for this problem.
en_US
Patrocinador
dc.description.sponsorship
FONDECYT grants
1110024
1110674
ANILLO grant
ACT-88
Basal project CMM (Universidad de Chile)
ICM grant
P10-024-F