A hybrid variational principle for the Keller-Segel system in R-2
Author
dc.contributor.author
Blanchet, Adrien
Author
dc.contributor.author
Carrillo, José Antonio
Author
dc.contributor.author
Kinderlehrer, David
Author
dc.contributor.author
Kowalczyk, Michal
Author
dc.contributor.author
Laurençot, Philippe
Author
dc.contributor.author
Lisini, Stefano
Admission date
dc.date.accessioned
2015-12-28T17:44:08Z
Available date
dc.date.available
2015-12-28T17:44:08Z
Publication date
dc.date.issued
2015
Cita de ítem
dc.identifier.citation
ESAIM: M2AN 49 (2015) 1553–1576
en_US
Identifier
dc.identifier.other
DOI: 10.1051/m2an/2015021
Identifier
dc.identifier.uri
https://repositorio.uchile.cl/handle/2250/135987
General note
dc.description
Artículo de publicación ISI
en_US
Abstract
dc.description.abstract
We construct weak global in time solutions to the classical Keller-Segel system describing cell movement by chemotaxis in two dimensions when the total mass is below the established critical value. Our construction takes advantage of the fact that the Keller-Segel system can be realized as a gradient flow in a suitable functional product space. This allows us to employ a hybrid variational principle which is a generalisation of the minimizing implicit scheme for Wasserstein distances introduced by [R. Jordan, D. Kinderlehrer and F. Otto, SIAM J. Math. Anal. 29 (1998) 1-17].