Structure of transition classes for factor codes on shifts of finite type
Author
dc.contributor.author
Allahbakhshi, Mahsa
Author
dc.contributor.author
Hong, Soonjo
Author
dc.contributor.author
Jung, Uijin
Admission date
dc.date.accessioned
2015-12-30T02:39:59Z
Available date
dc.date.available
2015-12-30T02:39:59Z
Publication date
dc.date.issued
2015
Cita de ítem
dc.identifier.citation
Ergod. Th. & Dynam. Sys. (2015), 35, 2353–2370
en_US
Identifier
dc.identifier.other
doi: 10.1017/etds.2014.39
Identifier
dc.identifier.uri
https://repositorio.uchile.cl/handle/2250/136073
General note
dc.description
Artículo de publicación ISI
en_US
Abstract
dc.description.abstract
Given a factor code pi from a shift of finite type X onto a sofic shift Y, the class degree of pi is defined to be the minimal number of transition classes over the points of Y. In this paper, we investigate the structure of transition classes and present several dynamical properties analogous to the properties of fibers of finite-to-one factor codes. As a corollary, we show that for an irreducible factor triple, there cannot be a transition between two distinct transition classes over a right transitive point, answering a question raised by Quas.
en_US
Patrocinador
dc.description.sponsorship
Fondecyt; Basic Science Research Program through the National Research Foundation of Korea (NRF) - Ministry of Education