Irreducible Representations of Power-associative Train Algebras
Author
dc.contributor.author
Behn Von Schmieden, Antonio
Author
dc.contributor.author
Labra Jeldres, Alicia
Author
dc.contributor.author
Reyes Molina, Cristian
Admission date
dc.date.accessioned
2015-12-30T03:39:14Z
Available date
dc.date.available
2015-12-30T03:39:14Z
Publication date
dc.date.issued
2015
Cita de ítem
dc.identifier.citation
Algebra Colloquium Volumen: 22 Páginas: 903-908 Número especial: 1 Dec 2015
en_US
Identifier
dc.identifier.issn
1005-3867
Identifier
dc.identifier.other
DOI: 10.1142/S1005386715000759
Identifier
dc.identifier.uri
https://repositorio.uchile.cl/handle/2250/136086
General note
dc.description
Artículo de publicación ISI
en_US
General note
dc.description
Sin acceso a texto completo
Abstract
dc.description.abstract
Train algebras were introduced by Etherington in 1939 as an algebraic framework for treating
genetic problems. The aim of this paper is to study the representations and irreducible
representations of power-associative train algebras of rank 4. There are three families of such
algebras and for two of them we prove that every irreducible representation has dimension one over
the ground field. For the third family we give an example of an irreducible representation of
dimension three