Show simple item record

Authordc.contributor.authorÁlvarez Daziano, Felipe 
Authordc.contributor.authorFlores, Salvador 
Admission datedc.date.accessioned2016-01-03T02:03:14Z
Available datedc.date.available2016-01-03T02:03:14Z
Publication datedc.date.issued2015
Cita de ítemdc.identifier.citationSIAM Journal on Mathematical Analysis Volumen: 47 Número: 5 (2015)en_US
Identifierdc.identifier.otherDOI: 10.1137/140988619
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/136132
General notedc.descriptionArtículo de publicación ISIen_US
General notedc.descriptionSin acceso a texto completo
Abstractdc.description.abstractVariational problems under uniform quasi-convex constraints on the gradient are studied. Our technique consists in approximating the original problem by a one-parameter family of smooth unconstrained optimization problems. Existence of solutions to the problems under consideration is proved as well as existence of Lagrange multipliers associated to the uniform constraint; no constraint qualification condition is required. The solution-multiplier pairs are shown to satisfy an Euler-Lagrange equation and a complementarity property. Numerical experiments confirm the ability of our method to accurately compute solutions and Lagrange multipliers.en_US
Patrocinadordc.description.sponsorshipInstitute on Complex Engineering Systems ICMP-05-004-F CONICYT FBO16 FONDECYT 1130176 CONICYT-Chile under grant FONDECYT 3120166en_US
Lenguagedc.language.isoenen_US
Publisherdc.publisherSIAM Publicationsen_US
Keywordsdc.subjectLagrange multipliersen_US
Keywordsdc.subjectp-Laplacianen_US
Keywordsdc.subjectMaximum principlesen_US
Keywordsdc.subjectPower penaltyen_US
Títulodc.titleExistence and approximation for variational problems under uniform constraints on the gradient by power penaltyen_US
Document typedc.typeArtículo de revista


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record