Author | dc.contributor.author | Álvarez Daziano, Felipe | |
Author | dc.contributor.author | Flores, Salvador | |
Admission date | dc.date.accessioned | 2016-01-03T02:03:14Z | |
Available date | dc.date.available | 2016-01-03T02:03:14Z | |
Publication date | dc.date.issued | 2015 | |
Cita de ítem | dc.identifier.citation | SIAM Journal on Mathematical Analysis Volumen: 47 Número: 5 (2015) | en_US |
Identifier | dc.identifier.other | DOI: 10.1137/140988619 | |
Identifier | dc.identifier.uri | https://repositorio.uchile.cl/handle/2250/136132 | |
General note | dc.description | Artículo de publicación ISI | en_US |
General note | dc.description | Sin acceso a texto completo | |
Abstract | dc.description.abstract | Variational problems under uniform quasi-convex constraints on the gradient are studied. Our
technique consists in approximating the original problem by a one-parameter family of smooth
unconstrained optimization problems. Existence of solutions to the problems under consideration is
proved as well as existence of Lagrange multipliers associated to the uniform constraint; no
constraint qualification condition is required. The solution-multiplier pairs are shown to satisfy an
Euler-Lagrange equation and a complementarity property. Numerical experiments confirm the ability
of our method to accurately compute solutions and Lagrange multipliers. | en_US |
Patrocinador | dc.description.sponsorship | Institute on Complex Engineering Systems
ICMP-05-004-F
CONICYT FBO16
FONDECYT 1130176
CONICYT-Chile under grant FONDECYT 3120166 | en_US |
Lenguage | dc.language.iso | en | en_US |
Publisher | dc.publisher | SIAM Publications | en_US |
Keywords | dc.subject | Lagrange multipliers | en_US |
Keywords | dc.subject | p-Laplacian | en_US |
Keywords | dc.subject | Maximum principles | en_US |
Keywords | dc.subject | Power penalty | en_US |
Título | dc.title | Existence and approximation for variational problems under uniform constraints on the gradient by power penalty | en_US |
Document type | dc.type | Artículo de revista | |