Show simple item record

Professor Advisordc.contributor.advisorOrtega Palma, Jaime 
Authordc.contributor.authorGarcía Ubilla, Arnol David 
Staff editordc.contributor.editorFacultad de Ciencias Físicas y Matemáticas
Staff editordc.contributor.editorDepartamento de Ingeniería Matemática
Associate professordc.contributor.otherAsahi Kodama, Takeshi
Associate professordc.contributor.otherAmaya Arriagada, Jorge 
Associate professordc.contributor.otherMorales Silva, Susana
Admission datedc.date.accessioned2016-01-04T19:42:02Z
Available datedc.date.available2016-01-04T19:42:02Z
Publication datedc.date.issued2015
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/136150
General notedc.descriptionIngeniero Civil Matemático
Abstractdc.description.abstractEl suicidio en Chile se ha convertido en uno de los problemas más necesarios de hacer frente en salud pública, más aún, si consideramos que la enorme mayoría de las personas que mueren por suicidio presentan algún diagnóstico psiquiátrico y han consultado a un especialista los meses antes de cometer suicidio. Esto, motiva la creación de indicadores y alertas para detectar de forma eficaz y oportuna cuando una persona ingresa a una zona de riesgo suicida. En el presente trabajo se aborda este problema, definiendo una zona o espectro de riesgo suicida, y generando modelos matemáticos y estadísticos para la detección de pacientes en esta zona de riesgo. Para esto, se utiliza una base de datos de 707 pacientes, consultantes de salud mental, de tres centros de salud distintos de la región metropolitana. La base de datos a su vez contempla 343 variables, incluyendo tanto información sociodemográfica de cada paciente, como también sus respuestas en siete instrumentos clínicos utilizados habitualmente en salud mental (DEQ, STAXI, OQ, RFL, APGAR, PBI Madre y PBI Padre). Inicialmente la base de datos es depurada eliminando aquellos campos y/o registros con gran porcentaje de valores nulos, mientras que la imputación de valores perdidos se realiza mediante técnicas tradicionales y en algunos casos según el criterio experto, donde se utiliza un método de imputación según valor de subescala para los distintos instrumentos clínicos. Posteriormente, se realiza una reducción de atributos mediante el uso de herramientas estadísticas y provenientes del machine learning. Con esta información, se generan cinco modelos utilizando distintas técnicas y herramientas del ámbito de la minería de datos y machine learning mediante aprendizaje supervisado. Los modelos son generados y calibrados usando el lenguaje estadístico R, y se comparan sus resultados mediante cuatro métricas distintas: precisión (o accuracy), sensibilidad, especificidad, y mediante su representación en el espacio ROC. El modelo o clasificador finalmente propuesto corresponde a un modelo de support vector machine, que permite discriminar cuando un paciente se encuentra en una zona de riesgo suicida. El modelo fue entrenado utilizando un kernel de tipo RBF, y utiliza tan sólo 22 variables predictoras, entregando una precisión aproximada del $78%, calculada mediante k-validación cruzada de n-folds con k=100 y n=10.en_US
Lenguagedc.language.isoesen_US
Publisherdc.publisherUniversidad de Chileen_US
Type of licensedc.rightsAtribución-NoComercial-SinDerivadas 3.0 Chile*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Keywordsdc.subjectSalud mentalen_US
Keywordsdc.subjectSuicidioen_US
Keywordsdc.subjectFactores de riesgoen_US
Keywordsdc.subjectMinería de datosen_US
Keywordsdc.subjectSupport vector machineen_US
Títulodc.titleAnálisis de datos y búsqueda de patrones en aplicaciones médicasen_US
Document typedc.typeTesis


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial-SinDerivadas 3.0 Chile
Except where otherwise noted, this item's license is described as Atribución-NoComercial-SinDerivadas 3.0 Chile