Large solutions to elliptic equations involving fractional Laplacian
Author
dc.contributor.author
Huyuan, Chen
Author
dc.contributor.author
Felmer Aichele, Patricio
Author
dc.contributor.author
Quaas, Alexander
Admission date
dc.date.accessioned
2016-01-13T18:48:33Z
Available date
dc.date.available
2016-01-13T18:48:33Z
Publication date
dc.date.issued
2015
Cita de ítem
dc.identifier.citation
Annales de L Institut Henri Poincare-Analyse Non Lineaire Volumen: 32 Número: 6 Páginas: 1199-1228 Nov-Dec 2015
en_US
Identifier
dc.identifier.other
DOI: 10.1016/j.anihpc.2014.08.001
Identifier
dc.identifier.uri
https://repositorio.uchile.cl/handle/2250/136471
General note
dc.description
Artículo de publicación ISI
en_US
Abstract
dc.description.abstract
The purpose of this paper is to study boundary blow up solutions for semi-linear fractional elliptic equations of the form
{(-Delta)(alpha)u(x) + vertical bar u vertical bar(p-1)u(x) = f(x), x is an element of Omega,
u(x) = 0, x is an element of(Omega) over bar (c)
lim(x is an element of Omega, x ->partial derivative Omega) u(x) = +infinity, where p > 1, Omega is an open bounded C-2 domain of R-N, N >= 2, the operator (-Delta)(alpha) with alpha is an element of (0, 1) is the fractional Laplacian and f: Omega -> R is a continuous function which satisfies some appropriate conditions. We obtain that problem (0.1) admits a solution with boundary behavior like d(x)(-2 alpha/p-1), when 1 + 2 alpha < p < 1 - 2 alpha/tau(0)(alpha), for some tau(0)(alpha) is an element of (-1, 0), and has infinitely many solutions with boundary behavior like d(x)(tau o(alpha)), when max{1 - 2 alpha/tau(0) + tau(0)(alpha)+1/tau(0), 1} < p < 1 - 2 tau/tau(0). Moreover, we also obtained some uniqueness and non-existence results for problem (0.1).
en_US
Patrocinador
dc.description.sponsorship
CONICYT
FONDECYT
1110291
1110210
Programa BASALCMM U. de Chile
Programa BASAL-CMM U. de Chile