Construction of a stable periodic solution to a semilinear heat equation with a prescribed profile
Author
dc.contributor.author
Mahmoudi, Fethi
Author
dc.contributor.author
Nouaili, Nejla
Author
dc.contributor.author
Zaag, Hatem
Admission date
dc.date.accessioned
2016-01-18T13:33:29Z
Available date
dc.date.available
2016-01-18T13:33:29Z
Publication date
dc.date.issued
2016
Cita de ítem
dc.identifier.citation
Nonlinear Analysis - Theory Methods & Applications Volumen: 131 Jan 2016
en_US
Identifier
dc.identifier.other
DOI: 10.1016/j.na.2015.09.002
Identifier
dc.identifier.uri
https://repositorio.uchile.cl/handle/2250/136558
General note
dc.description
Artículo de publicación ISI
en_US
Abstract
dc.description.abstract
We construct a periodic solution to the semilinear heat equation with power nonlinearity, in one space dimension, which blows up in finite time T only at one blow-up point. We also give a sharp description of its blow-up profile. The proof relies on the reduction of the problem to a finite dimensional one and the use of index theory to conclude. Thanks to the geometrical interpretation of the finite-dimensional parameters in terms of the blow-up time and blow-up point, we derive the stability of the constructed solution with respect to initial data.
en_US
Patrocinador
dc.description.sponsorship
Fondecyt Grant, Fondo Basal CMM
1140311
Millennium Nucleus Center for Analysis of PDE
NC130017
ERC, BLOWDISOL
291214
ANR project, ANAE
ANR-13-BS01-0010-03