Modelamiento del proceso de enfriamiento de baterías de ion-litio a través de sólidos con cambio de fase
Professor Advisor
dc.contributor.advisor
Calderón Muñoz, Williams
Author
dc.contributor.author
Valdés Mery, Felipe Mauricio
Staff editor
dc.contributor.editor
Facultad de Ciencias Físicas y Matemáticas
Staff editor
dc.contributor.editor
Departamento de Ingeniería Mecánica
Associate professor
dc.contributor.other
Orchard Concha, Marcos
Associate professor
dc.contributor.other
Reyes Marambio, Jorge
Admission date
dc.date.accessioned
2016-03-21T15:14:17Z
Available date
dc.date.available
2016-03-21T15:14:17Z
Publication date
dc.date.issued
2015
Identifier
dc.identifier.uri
https://repositorio.uchile.cl/handle/2250/137244
General note
dc.description
Ingeniero Civil Mecánico
Abstract
dc.description.abstract
El mercado de las baterías de ion-litio ha crecido sostenidamente en los últimos años, y se
espera que éste sea de más de 55.000 millones de dólares para el año 2020. Sin embargo, en
equipos de alta de demanda energética como los automóviles eléctricos, las altas temperaturas
dentro de las baterías puede generar diversos problemas de funcionamiento y durabilidad, por
lo que encontrar métodos que controlen la temperatura se vuelve imprescindible
El presente trabajo título tiene como objetivo general estudiar el uso de materiales de cambio
de fase sólido-sólido como medio de enfriamiento de baterías de ion-litio.
La metodología para desarrollar el trabajo de título consiste en buscar y escoger los PCM
adecuados (X40 y NPG) y obtener sus propiedades termofíscas, modelar la generación de calor
dentro de las celdas, diseñar el sistema con los parámetros correspondientes (tipo y espesor de
PCM, tasa de descarga, temperatura inicial y tipo de celda), para luego simular el enfriamiento
de las celdas durante la descarga. Con estos resultados, se modela la expulsión de calor
posterior a la descarga y finalmente se varían los parámetros de diseño. Una vez concluidas las
288 simulaciones, se procede a estudiar el enfriamiento durante el thermal runaway.
Los resultados de las simulaciones muestran que en el 71% de los casos el X40 es capaz de
mantener la temperatura bajo los 50°C y en el 80% en el caso del NPG. Además, se logra
homogeneidad en el arreglo de celda, ya que en solo 3 de los 288 casos totales (» 1%), la
diferencia entre la temperatura máxima y mínima es mayor a 5°C. La expulsión de calor para
todos los casos es lenta, superando las 10 horas en la mayoría de los casos. Mejorar la
conductividad térmica y emplear convección forzada puede solucionar el problema. En cuanto
la thermal runaway, la simulación mostró que el X95 es capaz de ralentizar la aparición de las
reacciones químicas más severas, ya que si la temperatura es baja desde el comienzo de anula
el feedback positivo temperatura-generación de calor.