Asymptotics for the heat kernel in multicone domains
Author
dc.contributor.author
Collet, Pierre
Author
dc.contributor.author
Duarte, Mauricio
Author
dc.contributor.author
Martínez Aguilera, Servet
Author
dc.contributor.author
Prat Waldron, Arturo
Author
dc.contributor.author
San Martín Aristegui, Jaime
Admission date
dc.date.accessioned
2016-05-26T14:29:57Z
Available date
dc.date.available
2016-05-26T14:29:57Z
Publication date
dc.date.issued
2016
Cita de ítem
dc.identifier.citation
Journal of Functional Analysis 270 (2016) 1269–1298
en_US
Identifier
dc.identifier.other
DOI: 10.1016/j.jfa.2015.10.021
Identifier
dc.identifier.uri
https://repositorio.uchile.cl/handle/2250/138504
General note
dc.description
Artículo de publicación ISI
en_US
Abstract
dc.description.abstract
A multicone domain Omega subset of R-n is an open, connected set that resembles a finite collection of cones far away from the origin. We study the rate of decay in time of the heat kernel p(t, x, y) of a Brownian motion killed upon exiting Omega, using both probabilistic and analytical techniques. We find that the decay is polynomial and we characterize lim(t ->infinity)p(t, x, y) in terms of the Martin boundary of Omega at infinity, where alpha > 0 depends on the geometry of Omega. We next derive an analogous result for t(kappa/2)P(x) (T > t), with kappa = 1 +alpha-n/2, where T is the exit time from Omega. Lastly, we deduce the renormalized Yaglom limit for the process conditioned on survival.
en_US
Patrocinador
dc.description.sponsorship
FONDECYT
3130724
Programa Iniciativa Cientifica Milenio grant through Nucleus Millenium Stochastic Models of Complex and Disordered Systems
NC130062