Show simple item record

Authordc.contributor.authorContreras Piña, Constanza 
Authordc.contributor.authorRíos, Sebastián 
Admission datedc.date.accessioned2016-06-13T18:50:19Z
Available datedc.date.available2016-06-13T18:50:19Z
Publication datedc.date.issued2016
Cita de ítemdc.identifier.citationNeurocomputing179(2016)176–185en_US
Identifierdc.identifier.otherdx.doi.org/10.1016/j.neucom.2015.11.080
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/138761
General notedc.descriptionArtículo de publicación ISIen_US
Abstractdc.description.abstractIn recent years, topic models have been gaining popularity to perform classification of text from several web sources (from social networks to digital media). However, after working for many years in the web text mining area we have notice that assessing the quality of topics discovered is still an open problem, quite hard to solve. In this paper, we evaluated four latent semantic models using two metrics: coherence and interpretability which are the most used. We show how these pure mathematical metrics fall short to asses topics quality. Experiments were performed over a dataset of 21,863 text reclamation.en_US
Lenguagedc.language.isoenen_US
Publisherdc.publisherElsevieren_US
Type of licensedc.rightsAtribución-NoComercial-SinDerivadas 3.0 Chile*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Keywordsdc.subjectLatent semanticsen_US
Keywordsdc.subjectText miningen_US
Keywordsdc.subjectQuality measuresen_US
Keywordsdc.subjectEvaluation assessmenten_US
Títulodc.titleAn empirical comparison of latent sematic models for applications in industryen_US
Document typedc.typeArtículo de revista


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial-SinDerivadas 3.0 Chile
Except where otherwise noted, this item's license is described as Atribución-NoComercial-SinDerivadas 3.0 Chile