Show simple item record

Authordc.contributor.authorMin, M. 
Authordc.contributor.authorRab, C. 
Authordc.contributor.authorWoitke, P. 
Authordc.contributor.authorDominik, C. 
Authordc.contributor.authorMenard, F. 
Admission datedc.date.accessioned2016-06-16T22:58:17Z
Available datedc.date.available2016-06-16T22:58:17Z
Publication datedc.date.issued2016
Cita de ítemdc.identifier.citationAstronomy & Astrophysics Volumen: 585 Número de artículo: A13 (2016)en_US
Identifierdc.identifier.otherDOI: 10.1051/0004-6361/201526048
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/138939
General notedc.descriptionArtículo de publicación ISIen_US
Abstractdc.description.abstractContext. In protoplanetary disks micron-size dust grains coagulate to form larger structures with complex shapes and compositions. The coagulation process changes the absorption and scattering properties of particles in the disk in significant ways. To properly interpret observations of protoplanetary disks and to place these observations in the context of the first steps of planet formation, it is crucial to understand the optical properties of these complex structures. Aims. We derive the optical properties of dust aggregates using detailed computations of aggregate structures and compare these computationally demanding results with approximate methods that are cheaper to compute in practice. In this way we wish to understand the merits and problems of approximate methods and define the context in which they can or cannot be used to analyze observations of objects where significant grain growth is taking place. Methods. For the detailed computations we used the discrete dipole approximation (DDA), a method able to compute the interaction of light with a complexly shaped, inhomogeneous particle. We compared the results to those obtained using spherical and irregular, homogeneous and inhomogeneous particles. Results. While no approximate method properly reproduces all characteristics of large dust aggregates, the thermal properties of dust can be analyzed using irregularly shaped, porous, inhomogeneous grains. The asymmetry of the scattering phase function is a good indicator of aggregate size, while the degree of polarization is probably determined by the size of the constituent particles. Optical properties derived from aggregates significantly differ from the most frequently used standard ("astronomical silicate" in spherical grains). We outline a computationally fast and relatively accurate method that can be used for a multiwavelength analysis of aggregate dust in protoplanetary disks.en_US
Patrocinadordc.description.sponsorshipEU 284405; ustrian Science Fund (FWF) P24790en_US
Lenguagedc.language.isoenen_US
Publisherdc.publisherEDP SCIENCESen_US
Type of licensedc.rightsAtribución-NoComercial-SinDerivadas 3.0 Chile*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Keywordsdc.subjectscatteringen_US
Keywordsdc.subjectprotoplanetary disksen_US
Keywordsdc.subjectopacityen_US
Títulodc.titleMultiwavelength optical properties of compact dust aggregates in protoplanetary disksen_US
Document typedc.typeArtículo de revista


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial-SinDerivadas 3.0 Chile
Except where otherwise noted, this item's license is described as Atribución-NoComercial-SinDerivadas 3.0 Chile