Characterizations of convex approximate subdifferential calculus in banach spaces
Author
dc.contributor.author
Correa Fontecilla, Rafael
Author
dc.contributor.author
Hantoute, Abderrahim
Author
dc.contributor.author
Jourani, A.
Admission date
dc.date.accessioned
2016-07-06T14:02:37Z
Available date
dc.date.available
2016-07-06T14:02:37Z
Publication date
dc.date.issued
2016
Cita de ítem
dc.identifier.citation
Transactions of the American Mathematical Society Volumen: 368 Número: 7 Páginas: 4831-4854 jul 2016
en_US
Identifier
dc.identifier.other
DOI: 10.1090/tran/6589
Identifier
dc.identifier.uri
https://repositorio.uchile.cl/handle/2250/139431
General note
dc.description
Artículo de publicación ISI
en_US
General note
dc.description
Sin acceso a texto completo
Abstract
dc.description.abstract
We establish subdifferential calculus rules for the sum of convex functions defined on normed spaces. This is achieved by means of a condition relying on the continuity behaviour of the inf-convolution of their corresponding conjugates, with respect to any given topology intermediate between the norm and the weak* topologies on the dual space. Such a condition turns out to also be necessary in Banach spaces. These results extend both the classical formulas by Hiriart-Urruty and Phelps and by Thibault.