Show simple item record

Authordc.contributor.authorMundnich, Karel 
Authordc.contributor.authorOrchard Concha, Marcos 
Admission datedc.date.accessioned2016-09-06T15:38:37Z
Available datedc.date.available2016-09-06T15:38:37Z
Publication datedc.date.issued2016-07
Cita de ítemdc.identifier.citationExpert Systems With Applications 54 (2016) 228–240es_ES
Identifierdc.identifier.issn1873-6793
Identifierdc.identifier.other10.1016/j.eswa.2016.01.052
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/140316
Abstractdc.description.abstractThis work presents a novel online early detector of high-volatility clusters based on uGARCH models (a variation of the GARCH model), risk-sensitive particle-filtering-based estimators, and hypothesis testing procedures. The proposed detector utilizes Risk-Sensitive Particle Filters (RSPF) to generate an estimate of the volatility probability density function (PDF) that offers better resolution in the areas of the state space that are associated with the incipient appearance of high-volatility clusters. This is achieved using the Generalized Pareto Distribution for the generation of particles. Risk-sensitive estimates are used by a detector that evaluates changes between prior and posterior probability densities via asymmetric hypothesis tests, allowing early detection of sudden volatility increments (typically associated with early stages of high-volatility clusters). Performance of the proposed approach is compared to other implementations based on the classic Particle Filter, in terms of its capability to track regions of the state-space associated to a greater financial risk. The proposed volatility cluster detection scheme is tested and validated using both simulated and actual IBM's daily stock market data.es_ES
Patrocinadordc.description.sponsorshipFONDECYT 1140774 Advanced Center for Electrical and Electronic Engineering, Basal Project FB0008es_ES
Lenguagedc.language.isoenes_ES
Publisherdc.publisherElsevieres_ES
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Sourcedc.sourceExpert Systems With Applicationses_ES
Keywordsdc.subjectBayesian inferencees_ES
Keywordsdc.subjectRisk-sensitive particle filterses_ES
Keywordsdc.subjectStochastic volatility estimationes_ES
Keywordsdc.subjectEvent detectiones_ES
Títulodc.titleEarly online detection of high volatility clusters using Particle Filterses_ES
Document typedc.typeArtículo de revista
Catalogueruchile.catalogadorcctes_ES
Indexationuchile.indexArtículo de publicación ISIes_ES
Indexationuchile.indexArtículo de publicación SCOPUSes_ES


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile