Show simple item record

Authordc.contributor.authorMontargès, M. 
Authordc.contributor.authorKervella, Pierre 
Authordc.contributor.authorPerrin, G. 
Authordc.contributor.authorChiavassa, A. 
Authordc.contributor.authorLe Bouquin, J.-B. 
Authordc.contributor.authorAurière, M. 
Authordc.contributor.authorLópez Ariste, A. 
Authordc.contributor.authorMathias, P. 
Authordc.contributor.authorRidgway, S. T. 
Authordc.contributor.authorLacour, S. 
Authordc.contributor.authorHaubois, X. 
Authordc.contributor.authorBerger, J.-P. 
Admission datedc.date.accessioned2016-09-16T14:05:15Z
Available datedc.date.available2016-09-16T14:05:15Z
Publication datedc.date.issued2016
Cita de ítemdc.identifier.citationA&A 588, A130 (2016)es_ES
Identifierdc.identifier.issn1432-0746
Identifierdc.identifier.other10.1051/0004-6361/201527028
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/140443
Abstractdc.description.abstractContext. The mass-loss mechanism of cool massive evolved stars is poorly understood. The proximity of Betelgeuse makes it an appealing target to study its atmosphere, map the shape of its envelope, and follow the structure of its wind from the photosphere out to the interstellar medium. Aims. A link is suspected between the powerful convective motions in Betelgeuse and its mass loss. We aim to constrain the spatial structure and temporal evolution of the convective pattern on the photosphere and to search for evidence of this link. Methods. We report new interferometric observations in the infrared H-band using the VLTI/PIONIER instrument. We monitored the photosphere of Betelgeuse between 2012 January and 2014 November to look for evolutions that may trigger the outflow. Results. Our interferometric observations at low spatial frequencies are compatible with the presence of a hot spot on the photosphere that has a characteristic width of one stellar radius. It appears to be superposed on the smaller scale convective pattern. In the higher spatial frequency domain, we observe a significant difference between the observations and the predictions of 3D hydrodynamical simulations. Conclusions. We bring new evidence for the presence of a convective pattern in the photosphere of red supergiants. The inferred hot spot is probably the top of a giant convection cell although an asymmetric extension of the star cannot be excluded by these interferometric observations alone. The properties of the observed surface features show a stronger contrast and inhomogeneity as predicted by 3D radiative hydrodynamical simulations. We propose that the large observed feature is modifying the signature of the convective pattern at the surface of the star in a way that simulations cannot reproduce.es_ES
Patrocinadordc.description.sponsorshipNASA from the Space Telescope Science Institute HST-GO-12610.001-A NASA NAS 5-26555es_ES
Lenguagedc.language.isoenes_ES
Publisherdc.publisherESOes_ES
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Sourcedc.sourceAstronomy and Astrophysicses_ES
Keywordsdc.subjectStars: individual: Betelgeusees_ES
Keywordsdc.subjectStars: imaginges_ES
Keywordsdc.subjectSupergiantses_ES
Keywordsdc.subjectStars: mass-losses_ES
Keywordsdc.subjectInfrared: starses_ES
Keywordsdc.subjectTechniques: interferometrices_ES
Títulodc.titleThe close circumstellar environment of Betelgeuse IV. VLTI/PIONIER interferometric monitoring of the photospherees_ES
Document typedc.typeArtículo de revista
Catalogueruchile.catalogadorcctes_ES
Indexationuchile.indexArtículo de publicación ISIes_ES


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile