Show simple item record

Authordc.contributor.authorCurilem, Millaray 
Authordc.contributor.authorHuenupán, Fernando 
Authordc.contributor.authorBeltrán, Daniel 
Authordc.contributor.authorSan Martín, César 
Authordc.contributor.authorFuentealba, Gustavo 
Authordc.contributor.authorFranco, Luis 
Authordc.contributor.authorCardona, Carlos 
Authordc.contributor.authorAcuña, Gonzalo 
Authordc.contributor.authorChacón, Max 
Authordc.contributor.authorKhan, M. Salman 
Authordc.contributor.authorBecerra Yoma, Néstor 
Admission datedc.date.accessioned2016-10-28T18:27:42Z
Available datedc.date.available2016-10-28T18:27:42Z
Publication datedc.date.issued2016
Cita de ítemdc.identifier.citationJournal of Volcanology and Geothermal Research 315 (2016) 15–27es_ES
Identifierdc.identifier.other10.1016/j.jvolgeores.2016.02.006
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/141081
Abstractdc.description.abstractAutomatic pattern recognition applied to seismic signals from volcanoes may assist seismic monitoring by reducing the workload of analysts, allowing them to focus on more challenging activities, such as producing reports, implementing models, and understanding volcanic behaviour. In a previous work, we proposed a structure for automatic classification of seismic events in Llaima volcano, one of the most active volcanoes in the Southern Andes, located in the Araucania Region of Chile. A database of events taken from three monitoring stations on the volcano was used to create a classification structure, independent of which station provided the signal. The database included three types of volcanic events: tremor, long period, and volcano-tectonic and a contrast group which contains other types of seismic signals. In the present work, we maintain the same classification scheme, but we consider separately the stations information in order to assess whether the complementary information provided by different stations improves the performance of the classifier in recognising seismic patterns. This paper proposes two strategies for combining the information from the stations: i) combining the features extracted from the signals from each station and ii) combining the classifiers of each station. In the first case, the features extracted from the signals from each station are combined forming the input for a single classification structure. In the second, a decision stage combines the results of the classifiers for each station to give a unique output. The results confirm that the station-dependent strategies that combine the features and the classifiers from several stations improves the classification performance, and that the combination of the features provides the best performance. The results show an average improvement of 9% in the classification accuracy when compared with the station-independent method.es_ES
Patrocinadordc.description.sponsorshipDireccion de Investigacion at the Universidad de La Frontera DIUFRO10-0020 project CONICYT-PIA ANILLO ACT 1120 CONICYT-FONDEF IDeA CA13I10273 Project STIC-AmSud 15STIC-06es_ES
Lenguagedc.language.isoenes_ES
Publisherdc.publisherElsevieres_ES
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Sourcedc.sourceJournal of Volcanology and Geothermal Researches_ES
Keywordsdc.subjectSeismic discriminationes_ES
Keywordsdc.subjectVolcano monitoringes_ES
Keywordsdc.subjectPattern recognitiones_ES
Keywordsdc.subjectStation-dependent classifierses_ES
Keywordsdc.subjectSupport vector machineses_ES
Títulodc.titlePattern recognition applied to seismic signals of Llaima volcano (Chile): An evaluation of station-dependent classifierses_ES
Document typedc.typeArtículo de revista
Catalogueruchile.catalogadorlajes_ES
Indexationuchile.indexArtículo de publicación ISIes_ES


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile