Show simple item record

Authordc.contributor.authorEcheverría Solis, Alex 
Authordc.contributor.authorSilva Sánchez, Jorge 
Authordc.contributor.authorMéndez Bussard, René Alejandro 
Authordc.contributor.authorOrchard Concha, Marcos 
Admission datedc.date.accessioned2016-11-17T15:27:37Z
Available datedc.date.available2016-11-17T15:27:37Z
Publication datedc.date.issued2016
Cita de ítemdc.identifier.citationA&A 594, A111 (2016)es_ES
Identifierdc.identifier.other10.1051/0004-6361/201628220
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/141241
Abstractdc.description.abstractContext. The best precision that can be achieved to estimate the location of a stellar-like object is a topic of permanent interest in the astrometric community. Aims. We analyze bounds for the best position estimation of a stellar-like object on a CCD detector array in a Bayesian setting where the position is unknown, but where we have access to a prior distribution. In contrast to a parametric setting where we estimate a parameter from observations, the Bayesian approach estimates a random object (i.e., the position is a random variable) from observations that are statistically dependent on the position. Methods. We characterize the Bayesian Cramér-Rao (CR) that bounds the minimum mean square error (MMSE) of the best estimator of the position of a point source on a linear CCD-like detector, as a function of the properties of detector, the source, and the background. Results. We quantify and analyze the increase in astrometric performance from the use of a prior distribution of the object position, which is not available in the classical parametric setting. This gain is shown to be significant for various observational regimes, in particular in the case of faint objects or when the observations are taken under poor conditions. Furthermore, we present numerical evidence that the MMSE estimator of this problem tightly achieves the Bayesian CR bound. This is a remarkable result, demonstrating that all the performance gains presented in our analysis can be achieved with the MMSE estimator. Conclusions. The Bayesian CR bound can be used as a benchmark indicator of the expected maximum positional precision of a set of astrometric measurements in which prior information can be incorporated. This bound can be achieved through the conditional mean estimator, in contrast to the parametric case where no unbiased estimator precisely reaches the CR bound.es_ES
Lenguagedc.language.isoenes_ES
Publisherdc.publisherEDP Scienceses_ES
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Sourcedc.sourceAstronomy and Astrophysicses_ES
Keywordsdc.subjectastrometryes_ES
Keywordsdc.subjectmethods: statisticales_ES
Keywordsdc.subjectmethods: analyticales_ES
Keywordsdc.subjectinstrumentation: detectorses_ES
Keywordsdc.subjectmethods: data analysises_ES
Títulodc.titleAnalysis of the Bayesian Cramer-Rao lower bound in astrometry Studying the impact of prior information in the location of an objectes_ES
Document typedc.typeArtículo de revista
Catalogueruchile.catalogadorNAGes_ES
Indexationuchile.indexArtículo de publicación ISIes_ES


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile