Show simple item record

Authordc.contributor.authorVinyard, David J. 
Authordc.contributor.authorSun, Jennifer S. 
Authordc.contributor.authorGimpel, Javier 
Authordc.contributor.authorAnanyev, Gennady M. 
Authordc.contributor.authorMayfield, Stephen P. 
Authordc.contributor.authorDismukes, G. Charles 
Admission datedc.date.accessioned2016-11-17T16:14:17Z
Available datedc.date.available2016-11-17T16:14:17Z
Publication datedc.date.issued2016
Cita de ítemdc.identifier.citationPhotosynth Res (2016) 128:141–150es_ES
Identifierdc.identifier.other10.1007/s11120-015-0208-8
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/141245
Abstractdc.description.abstractOxygenic photosynthesis efficiency at increasing solar flux is limited by light-induced damage (photoinhibition) of Photosystem II (PSII), primarily targeting the D1 reaction center subunit. Some cyanobacteria contain two natural isoforms of D1 that function better under low light (D1:1) or high light (D1:2). Herein, rates and yields of photoassembly of the Mn4CaO5 water-oxidizing complex (WOC) from the free inorganic cofactors (Mn2+, Ca2+, water, electron acceptor) and apo-WOC-PSII are shown to differ significantly: D1:1 apo-WOC-PSII exhibits a 2.3-fold faster rate-limiting step of photoassembly and up to seven-fold faster rate to the first light-stable Mn3+ intermediate, IM1*, but with a much higher rate of photoinhibition than D1:2. Conversely, D1:2 apo-WOC-PSII assembles slower but has up to seven-fold higher yield, achieved by a higher quantum yield of charge separation and slower photoinhibition rate. These results confirm and extend previous observations of the two holoenzymes: D1:2-PSII has a greater quantum yield of primary charge separation, faster [P-680 (+) Q (A) (-) ] charge recombination and less photoinhibition that results in a slower rate and higher yield of photoassembly of its apo-WOC-PSII complex. In contrast, D1:1-PSII has a lower quantum yield of primary charge separation, a slower [P-680 (+) Q (A) (-) ] charge recombination rate, and faster photoinhibition that together result in higher rate but lower yield of photoassembly at higher light intensities. Cyanobacterial PSII reaction centers that contain the high- and low-light D1 isoforms can tailor performance to optimize photosynthesis at varying light conditions, with similar consequences on their photoassembly kinetics and yield. These different efficiencies of photoassembly versus photoinhibition impose differential costs for biosynthesis as a function of light intensity.es_ES
Patrocinadordc.description.sponsorshipNational Science Foundation-Chemistry of Life Processes CHE1213772 U.S. Department of Energy, Consortium for Algal Biofuels Commercialization DE-EE0003373 Waksman Institute of Microbiology Aresty Research Center for Undergraduates at Rutgers University Department of Deference Army Research Office through a National Defense Science and Engineering Graduate NDSEG - 32CFR168a National Science Foundation DGE-0937373 Comision Nacional de Investigacion Cientifica y Tecnologica de Chile (CONICYT)es_ES
Lenguagedc.language.isoenes_ES
Publisherdc.publisherSpringeres_ES
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Sourcedc.sourcePhotosynthesis Researches_ES
Keywordsdc.subjectPhotosystem IIes_ES
Keywordsdc.subjectOxygen evolutiones_ES
Keywordsdc.subjectWater-oxidizing complexes_ES
Keywordsdc.subjectPhoto-assemblyes_ES
Keywordsdc.subjectPhotosynthetic efficiencyes_ES
Títulodc.titleNatural isoforms of the Photosystem II D1 subunit differ in photoassembly efficiency of the water-oxidizing complexes_ES
Document typedc.typeArtículo de revista
Catalogueruchile.catalogadorlajes_ES
Indexationuchile.indexArtículo de publicación ISIes_ES


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile