Little is known about how software performance evolves across software revisions. The severity of this situation is high since (i) most performance variations seem to happen accidentally and (ii) addressing a performance regression is challenging, especially when functional code is stacked on it.
This paper reports an empirical study on the performance evolution of 19 applications, totaling over 19 MLOC. It took 52 days to run our 49 benchmarks. By relating performance variation with source code revisions, we found out that: (i) 1 out of every 3 application revisions introduces a performance variation, (ii) performance variations may be classified into 9 patterns, (iii) the most prominent cause of performance regression involves loops and collections. We carefully describe the patterns we identified, and detail how we addressed the numerous challenges we faced to complete our experiment.
es_ES
Patrocinador
dc.description.sponsorship
Ph.D. scholarship from CONICYT
AGCI, Chile
European Smalltalk User Group
Valenzuela Valdivia, Sebastián(Universidad de Chile, 2017)
La presente investigación toma como punto inicial mi tesis de pregrado titulada Corpusgraphesis; el cuerpo como generador e inscriptor de signos1. En aquella ocasión, llevé a cabo una indagación inicial que comprendía las ...
Our overall objective in this paper is to examine the way in which experiences and conditions outside the work domain, such as marital relations, financial circumstances, community support, and social networks, affect job ...
La siguiente investigación aborda la temática de unas madres en etapa de lactancia, quienes se han organizado, a través de las redes sociales y especialmente a través de la red social Facebook, para informar y promover la ...