Show simple item record

Authordc.contributor.authorDelpiano, Jose 
Authordc.contributor.authorPizarro, Luis 
Authordc.contributor.authorVerschae, Rodrigo 
Authordc.contributor.authorRuiz del Solar, Javier 
Admission datedc.date.accessioned2016-12-07T14:21:28Z
Available datedc.date.available2016-12-07T14:21:28Z
Publication datedc.date.issued2016
Cita de ítemdc.identifier.citationApplied Soft Computing 46 (2016) 1067–1078es_ES
Identifierdc.identifier.other10.1016/j.asoc.2016.01.03
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/141721
Abstractdc.description.abstracttOptical flow methods are among the most accurate techniques for estimating displacement and velocityfields in a number of applications that range from neuroscience to robotics. The performance of any opticalflow method will naturally depend on the configuration of its parameters, and for different applicationsthere are different trade-offs between the corresponding evaluation criteria (e.g. the accuracy and theprocessing speed of the estimated optical flow). Beyond the standard practice of manual selection ofparameters for a specific application, in this article we propose a framework for automatic parametersetting that allows searching for an approximated Pareto-optimal set of configurations in the wholeparameter space. This final Pareto-front characterizes each specific method, enabling proper methodcomparison and proper parameter selection. Using the proposed methodology and two open benchmarkdatabases, we study two recent variational optical flow methods. The obtained results clearly indicate thatthe method to be selected is application dependent, that in general method comparison and parameterselection should not be done using a single evaluation measure, and that the proposed approach allowsto successfully perform the desired method comparison and parameter selection.es_ES
Lenguagedc.language.isoeses_ES
Publisherdc.publisherElsevieres_ES
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Sourcedc.sourceApplied Soft Computinges_ES
Keywordsdc.subjectParameter selectionaes_ES
Keywordsdc.subjectOptical flowes_ES
Keywordsdc.subjectMulti-objective optimizationes_ES
Títulodc.titleMulti-objective optimization for parameter selection andcharacterization of optical flow methodses_ES
Document typedc.typeArtículo de revista
Catalogueruchile.catalogadorC. R. B.es_ES
Indexationuchile.indexArtículo de publicación ISIes_ES


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile