Show simple item record

Authordc.contributor.authorDaniilidis, Aris 
Authordc.contributor.authorMalick, Jerome 
Authordc.contributor.authorSendov, Hristo 
Admission datedc.date.accessioned2016-12-14T18:42:33Z
Available datedc.date.available2016-12-14T18:42:33Z
Publication datedc.date.issued2016-02
Cita de ítemdc.identifier.citationJournal D'Analyse Mathematique, Vol. 128 (2016)es_ES
Identifierdc.identifier.issn1565-8538
Identifierdc.identifier.other10.1007/s11854-016-0013-0
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/141883
Abstractdc.description.abstractA set of n x n symmetric matrices whose ordered vector of eigenvalues belongs to a fixed set in R-n is called spectral or isotropic. In this paper, we establish that every locally symmetric C-k submanifold M of R-n gives rise to a C-k spectral manifold for k is an element of {2, 3,...,infinity,omega}. An explicit formula for the dimension of the spectral manifold in terms of the dimension and the intrinsic properties of M is derived. This work builds upon the results of Sylvester and Silhavy and uses characteristic properties of locally symmetric submanifolds established in recent works by the authors.es_ES
Patrocinadordc.description.sponsorshipMINECO of Spain MTM2014-59179-C2-1-P FEDER of EU MTM2014-59179-C2-1-P BASAL Project PFB-03 FONDECYT (Chile) 1130176es_ES
Lenguagedc.language.isoenes_ES
Publisherdc.publisherSpringeres_ES
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Sourcedc.sourceJournal D'Analyse Mathematiquees_ES
Keywordsdc.subjectEigenvalueses_ES
Keywordsdc.subjectDifferentiabilityes_ES
Keywordsdc.subjectDerivativeses_ES
Keywordsdc.subjectMatrixes_ES
Títulodc.titleSpectral (isotropic) manifolds and their dimensiones_ES
Document typedc.typeArtículo de revista
Catalogueruchile.catalogadorcctes_ES
Indexationuchile.indexArtículo de publicación ISIes_ES


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile