Large mass boundary condensation patterns in the stationary Keller–Segel system
Author
dc.contributor.author
Pino Manresa, Manuel del
Author
dc.contributor.author
Pistoia, Angela
Author
dc.contributor.author
Vaira, Giusi
Admission date
dc.date.accessioned
2016-12-27T20:09:57Z
Available date
dc.date.available
2016-12-27T20:09:57Z
Publication date
dc.date.issued
2016
Cita de ítem
dc.identifier.citation
Journal of Differential Equations. Volumen: 261 Número: 6 Páginas: 3414-3462
es_ES
Identifier
dc.identifier.other
10.1016/j.jde.2016.05.032
Identifier
dc.identifier.uri
https://repositorio.uchile.cl/handle/2250/142139
Abstract
dc.description.abstract
We consider the boundary value problem
{ -Delta u + u = lambda e(u), in Omega partial derivative(v)u = 0 on partial derivative Omega
where Omega is a bounded smooth domain in R-2, lambda > 0 and v is the inner normal derivative at partial derivative Omega. This problem is equivalent to the stationary Keller-Segel system from chemotaxis.
We establish the existence of a solution u(lambda) which exhibits a sharp boundary layer along the entire boundary partial derivative Omega as lambda -> 0. These solutions have large mass in the sense that integral(Omega) lambda e(u lambda) similar to | log lambda|. (C) 2016 Elsevier Inc. All rights reserved.
es_ES
Patrocinador
dc.description.sponsorship
Fondecyt, Fondo Basal CMM, Millennium Nucleus CAPDE, MIUR-PRIN