Show simple item record

Authordc.contributor.authorRiquelme Hernández, Mario 
Authordc.contributor.authorQuataert, Eliot 
Authordc.contributor.authorVerscharen, Daniel 
Admission datedc.date.accessioned2016-12-27T20:16:03Z
Available datedc.date.available2016-12-27T20:16:03Z
Publication datedc.date.issued2016
Cita de ítemdc.identifier.citationThe Astrophysical Journal, 824:123 (11pp), 2016 June 20es_ES
Identifierdc.identifier.other10.3847/0004-637X/824/2/123
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/142143
Abstractdc.description.abstractIn low-collisionality plasmas, velocity-space instabilities are a key mechanism providing an effective collisionality for the plasma. We use particle-in-cell (PIC) simulations to study the interplay between electron-and ion-scale velocity-space instabilities and their effect on electron pressure anisotropy, viscous heating, and thermal conduction. The adiabatic invariance of the magnetic moment in low-collisionality plasmas leads to pressure anisotropy, Delta(pj) = p perpendicular to(j) - p(parallel to, j) > 0, if the magnetic field B is amplified (p perpendicular to,(j) j and p(parallel to, j) denote the pressure of species j (electron, ion) perpendicular and parallel to B). If the resulting anisotropy is large enough, it can in turn trigger small-scale plasma instabilities. Our PIC simulations explore the nonlinear regime of the mirror, IC, and electron whistler instabilities, through continuous amplification of the magnetic field vertical bar B vertical bar by an imposed shear in the plasma. In the regime 1 less than or similar to beta(j) less than or similar to 20 (beta(j) = 8 pi j/vertical bar B vertical bar(2)) the saturated electron pressure anisotropy, Delta p(e)/p(parallel to,e), is determined mainly by the (electron-lengthscale) whistler marginal stability condition, with a modest factor of similar to 1.5-2, decrease due to the trapping of electrons into ion-lengthscale mirrors. We explicitly calculate the mean free path of the electrons and ions along the mean magnetic field and provide a simple physical prescription for the mean free path and thermal conductivity in low-collisionality beta(j) greater than or similar to 1 plasmas. Our results imply that velocity-space instabilities likely decrease the thermal conductivity of plasma in the outer parts of massive, hot, galaxy clusters. We also discuss the implications of our results for electron heating and thermal conduction in low-collisionality accretion flows onto black holes, including Sgr A* in the Galactic Center.es_ES
Lenguagedc.language.isoenes_ES
Publisherdc.publisherIOP Publishinges_ES
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Sourcedc.sourceThe Astrophysical Journales_ES
Keywordsdc.subjectAccretiones_ES
Keywordsdc.subjectAccretion diskses_ES
Keywordsdc.subjectInstabilitieses_ES
Keywordsdc.subjectPlasmases_ES
Keywordsdc.subjectSolar windes_ES
Títulodc.titlePic simulations of the effect of velocity space instabilities on electron viscosity and thermal conductiones_ES
Document typedc.typeArtículo de revista
Catalogueruchile.catalogadorlajes_ES
Indexationuchile.indexArtículo de publicación ISIes_ES


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile