Show simple item record

Professor Guidedc.contributor.advisorMaass Sepúlveda, Alejandro
Authordc.contributor.authorMarshall Maldonado, Juan Guillermo 
Associate professordc.contributor.otherCoronel Soto, Daniel
Associate professordc.contributor.otherMartínez Aguilera, Servet
Associate professordc.contributor.otherSchraudner, Michael
Admission datedc.date.accessioned2017-11-24T16:55:59Z
Available datedc.date.available2017-11-24T16:55:59Z
Publication datedc.date.issued2017
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/145818
General notedc.descriptionMagíster en Ciencias de la Ingeniería, Mención Matemáticas Aplicadas. Ingeniero Civil Matemáticoes_ES
Abstractdc.description.abstractDesde los inicios de la la teoría ergódica la teoría espectral ha representado una herramienta potente para entender distintos aspectos de la dinámica de un sistema. La relación entre estas teorías se establece a través del operador de Koopman definido a partir de un sistema diná- mico en distintos espacios funcionales. Entre los resultados notables que se han demostrado utilizando ésta idea se pueden mencionar dos atribuídos a John von Neumann: un teorema ergódico y una caracterización de los sistemas de espectro discreto (ver [29]). Los operadores de Koopman se pueden estudiar a partir de las medidas espectrales, debido al teorema de representación espectral. Si bien ésta es una manera útil de caracterizar esos operadores, calcular las medidas espectrales es un problema difícil en el contexto general. Por esta razón es que se busca obtener información sobre ellas de forma indirecta, por ejemplo, a través de sus decaimientos asintóticos. Los sistemas dinámicos en donde ha sido posible describir las medidas espectrales son muy pocos y una categoría muy explorada es la de aquellos provenientes de substituciones y en particular de substituciones de largo constante [29]. Más recientemente, inspirados en [17], Bufetov y Solomyak prueban en [7] módulos de continuidad para las medidas espectrales asociadas a sistemas de tilings substitutivos uni- dimensionales. En [11] se generaliza uno de los resultados de [7] al contexto de sistemas de tilings susbtitutivos del espacio euclideano R d . Más precisamente se dan cotas del decaimiento de las medidas espectrales en torno al orígen. En el presente trabajo de tesis se generalizan las ideas de [7] encontrando un módulo de continuidad de tipo log-Hölder para las medidas espectrales en sistemas substitutivos de tilings de R d , pero para puntos alejados del orígen. Entre las técnicas esenciales que se usan para la demostración están la de representar las medidas espectrales como productos de Riesz matriciales, estimaciones del crecimiento de sumas torcidas de Birkhoff y su relación con los decaimientos de las medidas espectrales, la descomposición en sistemas de torres del sistema substitutivo de tilings y argumentos de teoría de números de Pisot. El resultado principal permite entender la parte continua del espectro de un sistema di- námico de tiling substitutivo. Los decaimientos de las medidas espectrales entregan tasas de débil mezcla como se hace en [23], las que son invariantes de conjugación topológica. Ésto podría ser una herramienta útil para distinguir sistemas dinámicos de espectro continuo.
Patrocinadordc.description.sponsorshipEste trabajo ha sido parcialmente financiado por el Centro de Modelamiento Matemáticoes_ES
Lenguagedc.language.isoeses_ES
Publisherdc.publisherUniversidad de Chilees_ES
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Keywordsdc.subjectAnálisis espectrales_ES
Keywordsdc.subjectOperador de Koopmanes_ES
Keywordsdc.subjectSistemas de Tilingses_ES
Títulodc.titleMódulo de continuidad para las medidas de correlación en sistemas substitutivos de Tilingses_ES
Document typedc.typeTesises_ES
Catalogueruchile.catalogadorgmmes_ES
Departmentuchile.departamentoDepartamento de Ingeniería Matemática
Facultyuchile.facultadFacultad de Ciencias Físicas y Matemáticases_ES


Files in this item

Icon
Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile