Show simple item record

Authordc.contributor.authorBedford, Jonathan 
Authordc.contributor.authorMoreno, Marcos 
Authordc.contributor.authorLi, Shaoyang 
Authordc.contributor.authorOncken, Onno 
Authordc.contributor.authorBáez, Juan Carlos 
Authordc.contributor.authorBevis, Michael 
Authordc.contributor.authorHeidbach, Oliver 
Authordc.contributor.authorLange, Dietrich 
Admission datedc.date.accessioned2017-12-11T19:22:23Z
Available datedc.date.available2017-12-11T19:22:23Z
Publication datedc.date.issued2016
Cita de ítemdc.identifier.citationJ. Geophys. Res. Solid Earth, 121, 7618–7638,es_ES
Identifierdc.identifier.issn2169-9313
Identifierdc.identifier.other10.1002/2016JB013093
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/146116
Abstractdc.description.abstractThe postseismic deformation captured with continuous Global Positioning System (cGPS) monitoring following many recent megathrust events has been shown to be a signal composed of two dominant processes: afterslip on the plate interface and viscoelastic relaxation of the continental and oceanic mantles in response to the coseismic stress perturbation. Following the south central Chile 2010 Maule M-w 8.8 earthquake, the time series from the regional cGPS network show a distinct curvature in the pathway of the horizontal motion that is not easily fit by a stationary decaying pattern of afterslip in combination with viscoelastic relaxation. Here we show that with realistic assumptions about the long-term decay of the afterslip signal, the postseismic signal can be decomposed into three first-order contributing processes: plate interface relocking, plate interface afterslip, and mantle viscoelastic relaxation. From our analyses we conclude that the plate interface recovers its interseismic locking state rapidly (model space ranges between an instant recovery and a period of 1 year), a finding that supports laboratory experimental evidence as well as some recent studies of aftershocks and postseismic surface deformation. Furthermore, relocking is the main cause of the curvature in the cGPS signal, and this study presents a plausible range of geodetic relocking rates following a megathrust earthquakees_ES
Patrocinadordc.description.sponsorshipDFG MO 2310/3-1es_ES
Lenguagedc.language.isoenes_ES
Publisherdc.publisherAmerican Geophysical Uniones_ES
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Sourcedc.sourceJournal of Geophysical Research: Solid Earthes_ES
Keywordsdc.subjectAndean subduction zonees_ES
Keywordsdc.subjectTohoku-oki earthquakees_ES
Keywordsdc.subjectW 8.8 Maulees_ES
Keywordsdc.subjectCrustal deformationes_ES
Keywordsdc.subjectJapan earthquakees_ES
Keywordsdc.subjectChile earthquakees_ES
Keywordsdc.subjectAseismic slipes_ES
Keywordsdc.subjectUpper-mantlees_ES
Keywordsdc.subjectFault slipes_ES
Keywordsdc.subjectMegathrustes_ES
Títulodc.titleSeparating rapid relocking, afterslip, and viscoelastic relaxation: An application of the postseismic straightening method to the Maule 2010 cGPSes_ES
Document typedc.typeArtículo de revista
Catalogueruchile.catalogadorapces_ES
Indexationuchile.indexArtículo de publicación ISIes_ES


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile