Slowly Decaying Radial Solutions of an Elliptic Equation with Subcritical and Exponents
Author
dc.contributor.author
Dávila Bonczos, Juan
Author
dc.contributor.author
Guerra, Ignacio
Admission date
dc.date.accessioned
2017-12-21T18:25:07Z
Available date
dc.date.available
2017-12-21T18:25:07Z
Publication date
dc.date.issued
2016
Cita de ítem
dc.identifier.citation
Journal d' Analyse Mathematique, 129: 367-391
es_ES
Identifier
dc.identifier.issn
0021-7670
Identifier
dc.identifier.other
10.1007/s11854-016-0025-9
Identifier
dc.identifier.uri
https://repositorio.uchile.cl/handle/2250/146276
Abstract
dc.description.abstract
We study radial solutions of the problem
Delta u + u(p) + u(q) = 0, u > 0 in R-N,
where N >= 3 and
N/N - 2 < p < N + 2/N - 2 < q.
We show that if p is close to N/(N - 2), q is close to (N + 2)/(N - 2), and a certain relation holds between them, then the problem has slowly decaying solutions
es_ES
Patrocinador
dc.description.sponsorship
Fondecyt
1130360
1130790
Fondo Basal CMM
Millennium Nucleus Center for Analysis of PDE
NC130017